October  2018, 38(10): 5119-5128. doi: 10.3934/dcds.2018225

Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems

Mathematical Institute, Silesian University in Opava, Na Rybníčku 626/1, Opava, 746 01, Czech Republic

Received  December 2017 Revised  June 2018 Published  July 2018

Fund Project: The author is supported by the grant SGS/18/2016.

We study chaotic properties of uniformly convergent nonautonomous dynamical systems. We show that, contrary to the autonomous systems on the compact interval, positivity of topological sequence entropy and occurrence of Li-Yorke chaos are not equivalent, more precisely, neither of the two possible implications is true.

Citation: Jakub Šotola. Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5119-5128. doi: 10.3934/dcds.2018225
References:
[1]

R. L. AdlerA. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.  doi: 10.1090/S0002-9947-1965-0175106-9.  Google Scholar

[2]

F. BlanchardE. GlasnerS. Kolyada and A. Maass, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.  doi: 10.1515/crll.2002.053.  Google Scholar

[3]

R. Bowen, Periodic points and measures for axiom A diffeomorphims, Trans. Amer. Math. Soc., 154 (1971), 377-397.  doi: 10.2307/1995452.  Google Scholar

[4]

A. M. Bruckner and J. Smítal, A characterization of $ω$-limit sets of maps of the interval with zero topological entropy, Ergod. Theory and Dyn. Syst., 13 (1993), 7-19.  doi: 10.1017/S0143385700007173.  Google Scholar

[5]

M. N. BurattiniF. A. B. CoutinhoL. F. Lopez and E. Massad, Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bull. Math. Biol., 68 (2006), 2263-2282.  doi: 10.1007/s11538-006-9108-6.  Google Scholar

[6]

J. S. Cánovas, Li-Yorke chaos in a class of nonautonmous discrete systems, J. Difference Equ. Appl., 17 (2011), 479-486.  doi: 10.1080/10236190903049025.  Google Scholar

[7]

T. Downarowicz, Positive topological entropy implies chaos DC2, Proc. Amer. Math. Soc., 142 (2014), 137-149.  doi: 10.1090/S0002-9939-2013-11717-X.  Google Scholar

[8]

J. Dvořáková, Chaos in nonautonomous discrete dynamical systems, Commun. Nonlinear. Sci. Numer. Simulat., 17 (2012), 4649-4652.  doi: 10.1016/j.cnsns.2012.06.005.  Google Scholar

[9]

G. L. FortiL. Paganoni and J. Smítal, Dynamics of homeomorphisms on minimal sets generated by triangular mappings, Bull. Austral. Math. Soc., 59 (1999), 1-20.  doi: 10.1017/S000497270003255X.  Google Scholar

[10]

N. Franzová and J. Smítal, Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc., 112 (1991), 1083-1086.  doi: 10.1090/S0002-9939-1991-1062387-3.  Google Scholar

[11]

S. GaoY. Liu and Y. Zhang, Analysis of a nonautonomous model for migratory birds with saturation incidence rate, Commun. Nonlinear. Sci. Numer. Simul., 17 (2012), 1659-1672.  doi: 10.1016/j.cnsns.2011.08.040.  Google Scholar

[12]

T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350.  doi: 10.1112/plms/s3-29.2.331.  Google Scholar

[13]

S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, Random & Computational Dynamics, 4 (1996), 205-233.   Google Scholar

[14]

J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297 (1986), 269-282.  doi: 10.1090/S0002-9947-1986-0849479-9.  Google Scholar

[15]

J. Šotolová, Topological Sequence Entropy of Nonautonomous Dynamical Systems, Diploma thesis, Silesian University in Opava, 2016. Google Scholar

[16]

M. Štefánková, Inheriting of chaos in uniformly convergent nonautonmous dynamical systems on the interval, Discrete Contin. Dyn. Syst., 36 (2016), 3435-3443.  doi: 10.3934/dcds.2016.36.3435.  Google Scholar

show all references

References:
[1]

R. L. AdlerA. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.  doi: 10.1090/S0002-9947-1965-0175106-9.  Google Scholar

[2]

F. BlanchardE. GlasnerS. Kolyada and A. Maass, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.  doi: 10.1515/crll.2002.053.  Google Scholar

[3]

R. Bowen, Periodic points and measures for axiom A diffeomorphims, Trans. Amer. Math. Soc., 154 (1971), 377-397.  doi: 10.2307/1995452.  Google Scholar

[4]

A. M. Bruckner and J. Smítal, A characterization of $ω$-limit sets of maps of the interval with zero topological entropy, Ergod. Theory and Dyn. Syst., 13 (1993), 7-19.  doi: 10.1017/S0143385700007173.  Google Scholar

[5]

M. N. BurattiniF. A. B. CoutinhoL. F. Lopez and E. Massad, Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bull. Math. Biol., 68 (2006), 2263-2282.  doi: 10.1007/s11538-006-9108-6.  Google Scholar

[6]

J. S. Cánovas, Li-Yorke chaos in a class of nonautonmous discrete systems, J. Difference Equ. Appl., 17 (2011), 479-486.  doi: 10.1080/10236190903049025.  Google Scholar

[7]

T. Downarowicz, Positive topological entropy implies chaos DC2, Proc. Amer. Math. Soc., 142 (2014), 137-149.  doi: 10.1090/S0002-9939-2013-11717-X.  Google Scholar

[8]

J. Dvořáková, Chaos in nonautonomous discrete dynamical systems, Commun. Nonlinear. Sci. Numer. Simulat., 17 (2012), 4649-4652.  doi: 10.1016/j.cnsns.2012.06.005.  Google Scholar

[9]

G. L. FortiL. Paganoni and J. Smítal, Dynamics of homeomorphisms on minimal sets generated by triangular mappings, Bull. Austral. Math. Soc., 59 (1999), 1-20.  doi: 10.1017/S000497270003255X.  Google Scholar

[10]

N. Franzová and J. Smítal, Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc., 112 (1991), 1083-1086.  doi: 10.1090/S0002-9939-1991-1062387-3.  Google Scholar

[11]

S. GaoY. Liu and Y. Zhang, Analysis of a nonautonomous model for migratory birds with saturation incidence rate, Commun. Nonlinear. Sci. Numer. Simul., 17 (2012), 1659-1672.  doi: 10.1016/j.cnsns.2011.08.040.  Google Scholar

[12]

T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350.  doi: 10.1112/plms/s3-29.2.331.  Google Scholar

[13]

S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, Random & Computational Dynamics, 4 (1996), 205-233.   Google Scholar

[14]

J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297 (1986), 269-282.  doi: 10.1090/S0002-9947-1986-0849479-9.  Google Scholar

[15]

J. Šotolová, Topological Sequence Entropy of Nonautonomous Dynamical Systems, Diploma thesis, Silesian University in Opava, 2016. Google Scholar

[16]

M. Štefánková, Inheriting of chaos in uniformly convergent nonautonmous dynamical systems on the interval, Discrete Contin. Dyn. Syst., 36 (2016), 3435-3443.  doi: 10.3934/dcds.2016.36.3435.  Google Scholar

Figure 1.  Sketches of maps from proof of Lemma 3.1
Figure 2.  Sketches of limit map f and its perturbation, dotted lines are unspecified parts of the graph
[1]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[2]

Yun Zhao, Wen-Chiao Cheng, Chih-Chang Ho. Q-entropy for general topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2059-2075. doi: 10.3934/dcds.2019086

[3]

Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

[4]

João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465

[5]

Daniel Gonçalves, Bruno Brogni Uggioni. Li-Yorke Chaos for ultragraph shift spaces. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2347-2365. doi: 10.3934/dcds.2020117

[6]

Alfredo Marzocchi, Sara Zandonella Necca. Attractors for dynamical systems in topological spaces. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 585-597. doi: 10.3934/dcds.2002.8.585

[7]

Chao Ma, Baowei Wang, Jun Wu. Diophantine approximation of the orbits in topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2455-2471. doi: 10.3934/dcds.2019104

[8]

Dominik Kwietniak. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2451-2467. doi: 10.3934/dcds.2013.33.2451

[9]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[10]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[11]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[12]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[13]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[14]

H.T. Banks, S. Dediu, H.K. Nguyen. Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. Mathematical Biosciences & Engineering, 2007, 4 (3) : 403-430. doi: 10.3934/mbe.2007.4.403

[15]

Noriaki Kawaguchi. Topological stability and shadowing of zero-dimensional dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2743-2761. doi: 10.3934/dcds.2019115

[16]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[17]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[18]

Jérôme Rousseau, Paulo Varandas, Yun Zhao. Entropy formulas for dynamical systems with mistakes. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4391-4407. doi: 10.3934/dcds.2012.32.4391

[19]

Yujun Zhu. Preimage entropy for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829

[20]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (126)
  • HTML views (94)
  • Cited by (0)

Other articles
by authors

[Back to Top]