-
Previous Article
Existence and non-existence results for variational higher order elliptic systems
- DCDS Home
- This Issue
-
Next Article
Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems
Entropy formulae of conditional entropy in mean metrics
1. | School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Jiangsu, China |
2. | Center of Nonlinear Science, Nanjing University, Nanjing 210093, Jiangsu, China |
3. | College of Mathematical and Physical Sciences, Taizhou University, Taizhou 225300, Jiangsu, China |
In this paper, we construct the Brin-Katok formula of conditional entropy for invariant measures of continuous maps on a compact metric space by replacing the Bowen metrics with the corresponding mean metrics. Additionally, this paper is also devoted to establishing the Katok's entropy formula of conditional entropy for ergodic measures in the case of mean metrics.
References:
[1] |
M. Brin and A. Katok, On local entropy, in Lecture Notes in Mathematics, 1007, Springer,
Berlin, (1983), 30–38.
doi: 10.1007/BFb0061408. |
[2] |
Y. Cao, H. Hu and Y. Zhao,
Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic Measure, Ergod. Theory Dyn. Syst., 33 (2013), 831-850.
doi: 10.1017/S0143385712000090. |
[3] |
W. Cheng, Y. Zhao and Y. Cao,
Pressures for asymptotically sub-additive potentials under a mistake function, Discrete Contin. Dyn. Syst., 32 (2012), 487-497.
doi: 10.3934/dcds.2012.32.487. |
[4] |
M. Einsiedler and T. Ward,
Ergodic Theory with a View Towards Number Theory, Graduate Texts in Math., 259, Springer-Verlag, London, 2011.
doi: 10.1007/978-0-85729-021-2. |
[5] |
D. Feng and W. Huang,
Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.
doi: 10.1016/j.jfa.2012.07.010. |
[6] |
E. Glasner,
Ergodic Theory Via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/surv/101. |
[7] |
M. Gröger and T. Jäger,
Some remarks on modified power entropy, Dynamics and Numbers, Contem. Math., 669 (2016), 105-122.
doi: 10.1090/conm/669. |
[8] |
B. Hasselblatt and A. Katok, Principal Structures, in Handbook of Dynamical Systems, 1A,
North-Holland, Amsterdam, (2002), 1–203.
doi: 10.1016/S1874-575X(02)80003-0. |
[9] |
L. He, J. Lv and L. Zhou,
Definition of measure-theoretic pressure using spanning sets, Acta Math. Sinica, Engl. Ser., 20 (2004), 709-718.
doi: 10.1007/s10114-004-0368-5. |
[10] |
W. Huang, Z. Wang and X. Ye, Measure complexity and Möbius disjointness, arXiv: 1707.06345. Google Scholar |
[11] |
A. Katok,
Lyapunov exponents, entropy and periodic orbits for diffemorphisms, Publ. Math. Inst. Hautes Études Sci., 51 (1980), 137-173.
|
[12] |
C. Pfister and W. Sullivan,
On the topological entropy of saturated sets, Ergod. Theory Dyn. Syst., 27 (2007), 929-956.
doi: 10.1017/S0143385706000824. |
[13] |
D. Thompson,
Irregular sets, the $β$-transformation and the almost specification property, Trans. Amer. Math. Soc., 364 (2012), 5395-5414.
doi: 10.1090/S0002-9947-2012-05540-1. |
[14] |
P. Walters,
An Introduction to Ergodic Theory, Graduate Texts in Math., 79, Springer, Berlin, 1982. |
[15] |
Y. Zhao and Y. Cao,
Measure-theoretic pressure for subadditive potentials, Nonlinear Analysis, 70 (2009), 2237-2247.
doi: 10.1016/j.na.2008.03.003. |
[16] |
D. Zheng, E. Chen E and J. Yang,
On large deviations for amenable group actions, Discrete
Contin. Dyn. Syst. Ser. A(12), 36 (2017), 7191-7206.
doi: 10.3934/dcds.2016113. |
[17] |
X. Zhou, L. Zhou and E. Chen,
Brin-Katok formula for the measure theoretic $r-$entropy, C.
R. Acad. Sci. Paris, Ser. I., 352 (2014), 473-477.
doi: 10.1016/j.crma.2014.04.005. |
[18] |
X. Zhou,
A formula of conditional entropy and some applications, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 4063-4075.
doi: 10.3934/dcds.2016.36.4063. |
[19] |
Y. Zhu,
On local entropy of random transformations, Stoch. Dyn., 8 (2008), 197-207.
doi: 10.1142/S0219493708002275. |
[20] |
Y. Zhu,
Two notes on measure-theoretic entropy of random dynamic systems, Acta Math. Sin., 25 (2009), 961-970.
doi: 10.1007/s10114-009-7206-8. |
show all references
References:
[1] |
M. Brin and A. Katok, On local entropy, in Lecture Notes in Mathematics, 1007, Springer,
Berlin, (1983), 30–38.
doi: 10.1007/BFb0061408. |
[2] |
Y. Cao, H. Hu and Y. Zhao,
Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic Measure, Ergod. Theory Dyn. Syst., 33 (2013), 831-850.
doi: 10.1017/S0143385712000090. |
[3] |
W. Cheng, Y. Zhao and Y. Cao,
Pressures for asymptotically sub-additive potentials under a mistake function, Discrete Contin. Dyn. Syst., 32 (2012), 487-497.
doi: 10.3934/dcds.2012.32.487. |
[4] |
M. Einsiedler and T. Ward,
Ergodic Theory with a View Towards Number Theory, Graduate Texts in Math., 259, Springer-Verlag, London, 2011.
doi: 10.1007/978-0-85729-021-2. |
[5] |
D. Feng and W. Huang,
Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.
doi: 10.1016/j.jfa.2012.07.010. |
[6] |
E. Glasner,
Ergodic Theory Via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/surv/101. |
[7] |
M. Gröger and T. Jäger,
Some remarks on modified power entropy, Dynamics and Numbers, Contem. Math., 669 (2016), 105-122.
doi: 10.1090/conm/669. |
[8] |
B. Hasselblatt and A. Katok, Principal Structures, in Handbook of Dynamical Systems, 1A,
North-Holland, Amsterdam, (2002), 1–203.
doi: 10.1016/S1874-575X(02)80003-0. |
[9] |
L. He, J. Lv and L. Zhou,
Definition of measure-theoretic pressure using spanning sets, Acta Math. Sinica, Engl. Ser., 20 (2004), 709-718.
doi: 10.1007/s10114-004-0368-5. |
[10] |
W. Huang, Z. Wang and X. Ye, Measure complexity and Möbius disjointness, arXiv: 1707.06345. Google Scholar |
[11] |
A. Katok,
Lyapunov exponents, entropy and periodic orbits for diffemorphisms, Publ. Math. Inst. Hautes Études Sci., 51 (1980), 137-173.
|
[12] |
C. Pfister and W. Sullivan,
On the topological entropy of saturated sets, Ergod. Theory Dyn. Syst., 27 (2007), 929-956.
doi: 10.1017/S0143385706000824. |
[13] |
D. Thompson,
Irregular sets, the $β$-transformation and the almost specification property, Trans. Amer. Math. Soc., 364 (2012), 5395-5414.
doi: 10.1090/S0002-9947-2012-05540-1. |
[14] |
P. Walters,
An Introduction to Ergodic Theory, Graduate Texts in Math., 79, Springer, Berlin, 1982. |
[15] |
Y. Zhao and Y. Cao,
Measure-theoretic pressure for subadditive potentials, Nonlinear Analysis, 70 (2009), 2237-2247.
doi: 10.1016/j.na.2008.03.003. |
[16] |
D. Zheng, E. Chen E and J. Yang,
On large deviations for amenable group actions, Discrete
Contin. Dyn. Syst. Ser. A(12), 36 (2017), 7191-7206.
doi: 10.3934/dcds.2016113. |
[17] |
X. Zhou, L. Zhou and E. Chen,
Brin-Katok formula for the measure theoretic $r-$entropy, C.
R. Acad. Sci. Paris, Ser. I., 352 (2014), 473-477.
doi: 10.1016/j.crma.2014.04.005. |
[18] |
X. Zhou,
A formula of conditional entropy and some applications, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 4063-4075.
doi: 10.3934/dcds.2016.36.4063. |
[19] |
Y. Zhu,
On local entropy of random transformations, Stoch. Dyn., 8 (2008), 197-207.
doi: 10.1142/S0219493708002275. |
[20] |
Y. Zhu,
Two notes on measure-theoretic entropy of random dynamic systems, Acta Math. Sin., 25 (2009), 961-970.
doi: 10.1007/s10114-009-7206-8. |
[1] |
Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195 |
[2] |
Xiaomin Zhou. A formula of conditional entropy and some applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4063-4075. doi: 10.3934/dcds.2016.36.4063 |
[3] |
Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421 |
[4] |
Min Qian, Jian-Sheng Xie. Entropy formula for endomorphisms: Relations between entropy, exponents and dimension. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 367-392. doi: 10.3934/dcds.2008.21.367 |
[5] |
Xinsheng Wang, Lin Wang, Yujun Zhu. Formula of entropy along unstable foliations for $C^1$ diffeomorphisms with dominated splitting. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2125-2140. doi: 10.3934/dcds.2018087 |
[6] |
Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123 |
[7] |
Evgeniy Timofeev, Alexei Kaltchenko. Nearest-neighbor entropy estimators with weak metrics. Advances in Mathematics of Communications, 2014, 8 (2) : 119-127. doi: 10.3934/amc.2014.8.119 |
[8] |
Xijun Hu, Li Wu. Decomposition of spectral flow and Bott-type iteration formula. Electronic Research Archive, 2020, 28 (1) : 127-148. doi: 10.3934/era.2020008 |
[9] |
Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192 |
[10] |
Yunping Jiang. On a question of Katok in one-dimensional case. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1209-1213. doi: 10.3934/dcds.2009.24.1209 |
[11] |
Jialu Fang, Yongluo Cao, Yun Zhao. Measure theoretic pressure and dimension formula for non-ergodic measures. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2767-2789. doi: 10.3934/dcds.2020149 |
[12] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[13] |
Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673 |
[14] |
Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor. Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences & Engineering, 2009, 6 (1) : 1-25. doi: 10.3934/mbe.2009.6.1 |
[15] |
Tao Wang, Yu Huang. Weighted topological and measure-theoretic entropy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3941-3967. doi: 10.3934/dcds.2019159 |
[16] |
L. Bakker. The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1183-1200. doi: 10.3934/cpaa.2013.12.1183 |
[17] |
Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232 |
[18] |
Peter Seibt. A period formula for torus automorphisms. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1029-1048. doi: 10.3934/dcds.2003.9.1029 |
[19] |
Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187 |
[20] |
Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]