• Previous Article
    Existence and non-existence results for variational higher order elliptic systems
  • DCDS Home
  • This Issue
  • Next Article
    Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems
October  2018, 38(10): 5129-5144. doi: 10.3934/dcds.2018226

Entropy formulae of conditional entropy in mean metrics

1. 

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Jiangsu, China

2. 

Center of Nonlinear Science, Nanjing University, Nanjing 210093, Jiangsu, China

3. 

College of Mathematical and Physical Sciences, Taizhou University, Taizhou 225300, Jiangsu, China

* Corresponding author: Ercai Chen

Received  January 2018 Revised  May 2018 Published  July 2018

Fund Project: The second author was supported by NNSF of China (11671208, 11431012). The third author was supported by NNSF of China (11401581).

In this paper, we construct the Brin-Katok formula of conditional entropy for invariant measures of continuous maps on a compact metric space by replacing the Bowen metrics with the corresponding mean metrics. Additionally, this paper is also devoted to establishing the Katok's entropy formula of conditional entropy for ergodic measures in the case of mean metrics.

Citation: Ping Huang, Ercai Chen, Chenwei Wang. Entropy formulae of conditional entropy in mean metrics. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5129-5144. doi: 10.3934/dcds.2018226
References:
[1]

M. Brin and A. Katok, On local entropy, in Lecture Notes in Mathematics, 1007, Springer, Berlin, (1983), 30–38. doi: 10.1007/BFb0061408.

[2]

Y. CaoH. Hu and Y. Zhao, Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic Measure, Ergod. Theory Dyn. Syst., 33 (2013), 831-850.  doi: 10.1017/S0143385712000090.

[3]

W. ChengY. Zhao and Y. Cao, Pressures for asymptotically sub-additive potentials under a mistake function, Discrete Contin. Dyn. Syst., 32 (2012), 487-497.  doi: 10.3934/dcds.2012.32.487.

[4]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Math., 259, Springer-Verlag, London, 2011. doi: 10.1007/978-0-85729-021-2.

[5]

D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.

[6]

E. Glasner, Ergodic Theory Via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/surv/101.

[7]

M. Gröger and T. Jäger, Some remarks on modified power entropy, Dynamics and Numbers, Contem. Math., 669 (2016), 105-122.  doi: 10.1090/conm/669.

[8]

B. Hasselblatt and A. Katok, Principal Structures, in Handbook of Dynamical Systems, 1A, North-Holland, Amsterdam, (2002), 1–203. doi: 10.1016/S1874-575X(02)80003-0.

[9]

L. HeJ. Lv and L. Zhou, Definition of measure-theoretic pressure using spanning sets, Acta Math. Sinica, Engl. Ser., 20 (2004), 709-718.  doi: 10.1007/s10114-004-0368-5.

[10]

W. Huang, Z. Wang and X. Ye, Measure complexity and Möbius disjointness, arXiv: 1707.06345.

[11]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffemorphisms, Publ. Math. Inst. Hautes Études Sci., 51 (1980), 137-173. 

[12]

C. Pfister and W. Sullivan, On the topological entropy of saturated sets, Ergod. Theory Dyn. Syst., 27 (2007), 929-956.  doi: 10.1017/S0143385706000824.

[13]

D. Thompson, Irregular sets, the $β$-transformation and the almost specification property, Trans. Amer. Math. Soc., 364 (2012), 5395-5414.  doi: 10.1090/S0002-9947-2012-05540-1.

[14]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Math., 79, Springer, Berlin, 1982.

[15]

Y. Zhao and Y. Cao, Measure-theoretic pressure for subadditive potentials, Nonlinear Analysis, 70 (2009), 2237-2247.  doi: 10.1016/j.na.2008.03.003.

[16]

D. ZhengE. Chen E and J. Yang, On large deviations for amenable group actions, Discrete Contin. Dyn. Syst. Ser. A(12), 36 (2017), 7191-7206.  doi: 10.3934/dcds.2016113.

[17]

X. ZhouL. Zhou and E. Chen, Brin-Katok formula for the measure theoretic $r-$entropy, C. R. Acad. Sci. Paris, Ser. I., 352 (2014), 473-477.  doi: 10.1016/j.crma.2014.04.005.

[18]

X. Zhou, A formula of conditional entropy and some applications, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 4063-4075.  doi: 10.3934/dcds.2016.36.4063.

[19]

Y. Zhu, On local entropy of random transformations, Stoch. Dyn., 8 (2008), 197-207.  doi: 10.1142/S0219493708002275.

[20]

Y. Zhu, Two notes on measure-theoretic entropy of random dynamic systems, Acta Math. Sin., 25 (2009), 961-970.  doi: 10.1007/s10114-009-7206-8.

show all references

References:
[1]

M. Brin and A. Katok, On local entropy, in Lecture Notes in Mathematics, 1007, Springer, Berlin, (1983), 30–38. doi: 10.1007/BFb0061408.

[2]

Y. CaoH. Hu and Y. Zhao, Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic Measure, Ergod. Theory Dyn. Syst., 33 (2013), 831-850.  doi: 10.1017/S0143385712000090.

[3]

W. ChengY. Zhao and Y. Cao, Pressures for asymptotically sub-additive potentials under a mistake function, Discrete Contin. Dyn. Syst., 32 (2012), 487-497.  doi: 10.3934/dcds.2012.32.487.

[4]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Math., 259, Springer-Verlag, London, 2011. doi: 10.1007/978-0-85729-021-2.

[5]

D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.

[6]

E. Glasner, Ergodic Theory Via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/surv/101.

[7]

M. Gröger and T. Jäger, Some remarks on modified power entropy, Dynamics and Numbers, Contem. Math., 669 (2016), 105-122.  doi: 10.1090/conm/669.

[8]

B. Hasselblatt and A. Katok, Principal Structures, in Handbook of Dynamical Systems, 1A, North-Holland, Amsterdam, (2002), 1–203. doi: 10.1016/S1874-575X(02)80003-0.

[9]

L. HeJ. Lv and L. Zhou, Definition of measure-theoretic pressure using spanning sets, Acta Math. Sinica, Engl. Ser., 20 (2004), 709-718.  doi: 10.1007/s10114-004-0368-5.

[10]

W. Huang, Z. Wang and X. Ye, Measure complexity and Möbius disjointness, arXiv: 1707.06345.

[11]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffemorphisms, Publ. Math. Inst. Hautes Études Sci., 51 (1980), 137-173. 

[12]

C. Pfister and W. Sullivan, On the topological entropy of saturated sets, Ergod. Theory Dyn. Syst., 27 (2007), 929-956.  doi: 10.1017/S0143385706000824.

[13]

D. Thompson, Irregular sets, the $β$-transformation and the almost specification property, Trans. Amer. Math. Soc., 364 (2012), 5395-5414.  doi: 10.1090/S0002-9947-2012-05540-1.

[14]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Math., 79, Springer, Berlin, 1982.

[15]

Y. Zhao and Y. Cao, Measure-theoretic pressure for subadditive potentials, Nonlinear Analysis, 70 (2009), 2237-2247.  doi: 10.1016/j.na.2008.03.003.

[16]

D. ZhengE. Chen E and J. Yang, On large deviations for amenable group actions, Discrete Contin. Dyn. Syst. Ser. A(12), 36 (2017), 7191-7206.  doi: 10.3934/dcds.2016113.

[17]

X. ZhouL. Zhou and E. Chen, Brin-Katok formula for the measure theoretic $r-$entropy, C. R. Acad. Sci. Paris, Ser. I., 352 (2014), 473-477.  doi: 10.1016/j.crma.2014.04.005.

[18]

X. Zhou, A formula of conditional entropy and some applications, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 4063-4075.  doi: 10.3934/dcds.2016.36.4063.

[19]

Y. Zhu, On local entropy of random transformations, Stoch. Dyn., 8 (2008), 197-207.  doi: 10.1142/S0219493708002275.

[20]

Y. Zhu, Two notes on measure-theoretic entropy of random dynamic systems, Acta Math. Sin., 25 (2009), 961-970.  doi: 10.1007/s10114-009-7206-8.

[1]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[2]

Xiaomin Zhou. A formula of conditional entropy and some applications. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4063-4075. doi: 10.3934/dcds.2016.36.4063

[3]

Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421

[4]

Min Qian, Jian-Sheng Xie. Entropy formula for endomorphisms: Relations between entropy, exponents and dimension. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 367-392. doi: 10.3934/dcds.2008.21.367

[5]

Xinsheng Wang, Lin Wang, Yujun Zhu. Formula of entropy along unstable foliations for $C^1$ diffeomorphisms with dominated splitting. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2125-2140. doi: 10.3934/dcds.2018087

[6]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[7]

Evgeniy Timofeev, Alexei Kaltchenko. Nearest-neighbor entropy estimators with weak metrics. Advances in Mathematics of Communications, 2014, 8 (2) : 119-127. doi: 10.3934/amc.2014.8.119

[8]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[9]

Yunping Jiang. On a question of Katok in one-dimensional case. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1209-1213. doi: 10.3934/dcds.2009.24.1209

[10]

Xijun Hu, Li Wu. Decomposition of spectral flow and Bott-type iteration formula. Electronic Research Archive, 2020, 28 (1) : 127-148. doi: 10.3934/era.2020008

[11]

Jialu Fang, Yongluo Cao, Yun Zhao. Measure theoretic pressure and dimension formula for non-ergodic measures. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2767-2789. doi: 10.3934/dcds.2020149

[12]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[13]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial and Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[14]

Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor. Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences & Engineering, 2009, 6 (1) : 1-25. doi: 10.3934/mbe.2009.6.1

[15]

Tao Wang, Yu Huang. Weighted topological and measure-theoretic entropy. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3941-3967. doi: 10.3934/dcds.2019159

[16]

Yuntao Zang. An upper bound of the measure-theoretical entropy. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022052

[17]

L. Bakker. The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1183-1200. doi: 10.3934/cpaa.2013.12.1183

[18]

Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232

[19]

Peter Seibt. A period formula for torus automorphisms. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1029-1048. doi: 10.3934/dcds.2003.9.1029

[20]

Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (405)
  • HTML views (128)
  • Cited by (0)

Other articles
by authors

[Back to Top]