In this paper, we construct the Brin-Katok formula of conditional entropy for invariant measures of continuous maps on a compact metric space by replacing the Bowen metrics with the corresponding mean metrics. Additionally, this paper is also devoted to establishing the Katok's entropy formula of conditional entropy for ergodic measures in the case of mean metrics.
Citation: |
[1] |
M. Brin and A. Katok, On local entropy, in Lecture Notes in Mathematics, 1007, Springer,
Berlin, (1983), 30–38.
doi: 10.1007/BFb0061408.![]() ![]() ![]() |
[2] |
Y. Cao, H. Hu and Y. Zhao, Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic Measure, Ergod. Theory Dyn. Syst., 33 (2013), 831-850.
doi: 10.1017/S0143385712000090.![]() ![]() ![]() |
[3] |
W. Cheng, Y. Zhao and Y. Cao, Pressures for asymptotically sub-additive potentials under a mistake function, Discrete Contin. Dyn. Syst., 32 (2012), 487-497.
doi: 10.3934/dcds.2012.32.487.![]() ![]() ![]() |
[4] |
M. Einsiedler and T. Ward,
Ergodic Theory with a View Towards Number Theory, Graduate Texts in Math., 259, Springer-Verlag, London, 2011.
doi: 10.1007/978-0-85729-021-2.![]() ![]() ![]() |
[5] |
D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.
doi: 10.1016/j.jfa.2012.07.010.![]() ![]() ![]() |
[6] |
E. Glasner,
Ergodic Theory Via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/surv/101.![]() ![]() ![]() |
[7] |
M. Gröger and T. Jäger, Some remarks on modified power entropy, Dynamics and Numbers, Contem. Math., 669 (2016), 105-122.
doi: 10.1090/conm/669.![]() ![]() ![]() |
[8] |
B. Hasselblatt and A. Katok, Principal Structures, in Handbook of Dynamical Systems, 1A,
North-Holland, Amsterdam, (2002), 1–203.
doi: 10.1016/S1874-575X(02)80003-0.![]() ![]() ![]() |
[9] |
L. He, J. Lv and L. Zhou, Definition of measure-theoretic pressure using spanning sets, Acta Math. Sinica, Engl. Ser., 20 (2004), 709-718.
doi: 10.1007/s10114-004-0368-5.![]() ![]() ![]() |
[10] |
W. Huang, Z. Wang and X. Ye, Measure complexity and Möbius disjointness, arXiv: 1707.06345.
![]() |
[11] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffemorphisms, Publ. Math. Inst. Hautes Études Sci., 51 (1980), 137-173.
![]() ![]() |
[12] |
C. Pfister and W. Sullivan, On the topological entropy of saturated sets, Ergod. Theory Dyn. Syst., 27 (2007), 929-956.
doi: 10.1017/S0143385706000824.![]() ![]() ![]() |
[13] |
D. Thompson, Irregular sets, the $β$-transformation and the almost specification property, Trans. Amer. Math. Soc., 364 (2012), 5395-5414.
doi: 10.1090/S0002-9947-2012-05540-1.![]() ![]() ![]() |
[14] |
P. Walters,
An Introduction to Ergodic Theory, Graduate Texts in Math., 79, Springer, Berlin, 1982.
![]() ![]() |
[15] |
Y. Zhao and Y. Cao, Measure-theoretic pressure for subadditive potentials, Nonlinear Analysis, 70 (2009), 2237-2247.
doi: 10.1016/j.na.2008.03.003.![]() ![]() ![]() |
[16] |
D. Zheng, E. Chen E and J. Yang, On large deviations for amenable group actions, Discrete
Contin. Dyn. Syst. Ser. A, 36 (2017), 7191-7206.
doi: 10.3934/dcds.2016113.![]() ![]() ![]() |
[17] |
X. Zhou, L. Zhou and E. Chen, Brin-Katok formula for the measure theoretic $r-$entropy, C.
R. Acad. Sci. Paris, Ser. I., 352 (2014), 473-477.
doi: 10.1016/j.crma.2014.04.005.![]() ![]() ![]() |
[18] |
X. Zhou, A formula of conditional entropy and some applications, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 4063-4075.
doi: 10.3934/dcds.2016.36.4063.![]() ![]() ![]() |
[19] |
Y. Zhu, On local entropy of random transformations, Stoch. Dyn., 8 (2008), 197-207.
doi: 10.1142/S0219493708002275.![]() ![]() ![]() |
[20] |
Y. Zhu, Two notes on measure-theoretic entropy of random dynamic systems, Acta Math. Sin., 25 (2009), 961-970.
doi: 10.1007/s10114-009-7206-8.![]() ![]() ![]() |