October  2018, 38(10): 5163-5188. doi: 10.3934/dcds.2018228

Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms

LAGA - Université Paris 13, 99 Av. Jean-Baptiste Clément, 93430 Villetaneus, France

Received  January 2018 Published  July 2018

We consider $ \mathit{Sp}\left( 2\mathit{d},\mathbb{R} \right)$ cocycles over two classes of partially hyperbolic diffeomorphisms: having compact center leaves and time one maps of Anosov flows. We prove that the Lyapunov exponents are non-zero in an open and dense set in the Hölder topology.

Citation: Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228
References:
[1]

Vitor Araújo and Maria José Pacifico, Three Dimensional Flows, volume 114. Apr 2012. Google Scholar

[2]

A. Avila and R. Krikorian, Monotonic cocycles, Inventiones mathematicae, 202 (2015), 271– 331, arXiv: 1310.0703v1 doi: 10.1007/s00222-014-0572-6.  Google Scholar

[3]

A. Avila, J. Santamaria and M. Viana, Cocycles over partially hyperbolic maps, Preprint, https://institucional.impa.br/preprint/index.action, 2008. Google Scholar

[4]

A. AvilaJ. Santamaria and M. Viana, Holonomy invariance: Rough regularity and applications to Lyapunov exponents, Astérisque, 358 (2013), 13-74.   Google Scholar

[5]

A. Avila and M. Viana, Extremal Lyapunov exponents: An invariance principle and applications, Invent. Math., 181 (2010), 115-189.  doi: 10.1007/s00222-010-0243-1.  Google Scholar

[6]

A. AvilaM. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity Ⅰ: Geodesic flows, J. Eur. Math. Soc. (JEMS), 17 (2015), 1435-1462.  doi: 10.4171/JEMS/534.  Google Scholar

[7]

A. Avila, Density of positive Lyapunov exponents for sl(2, r)-cocycles, J. Amer. Math. Soc., 24 (2011), 999-1014.  doi: 10.1090/S0894-0347-2011-00702-9.  Google Scholar

[8]

L. Backes, A. Brown and C. Butler. Continuity of Lyapunov exponents for cocycles with invariant holonomies, arXiv: 1507.08978v2 Google Scholar

[9]

L. Backes and M. Poletti, Continuity of lyapunov exponents is equivalent to continuity of oseledets subspaces, Stochastics and Dynamics, 17 (2017), 1750047, 18pp. doi: 10.1142/S0219493717500472.  Google Scholar

[10]

M. Bessa, J. Bochi, M. Cambrainha, C. Matheus, P. Varandas and D. Xu. Positivity of the top lyapunov exponent for cocycles on semisimple lie groups over hyperbolic bases, Bulletin of the Brazilian Mathematical Society, New Series, 49 (2018), 73–87, arXiv: 1611.10158 doi: 10.1007/s00574-017-0048-6.  Google Scholar

[11]

J. Bochi, Genericity of zero Lyapunov exponents, Ergod. Th. & Dynam. Sys., 22 (2002), 1667-1696.  doi: 10.1017/S0143385702001165.  Google Scholar

[12]

M. Cambrainha, Generic Symplectic Cocycles are Hyperbolic, PhD thesis, IMPA, 2013. Google Scholar

[13]

C. Liang, K. Marin and J. Yang, Lyapunov exponents of partially hyperbolic volume-preserving maps with 2-dimensional center bundle, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2018, arXiv: 1604.05987 doi: 10.1016/j.anihpc.2018.01.007.  Google Scholar

[14]

V. I. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-210.   Google Scholar

[15]

V. A. Rokhlin, On the fundamental ideas of measure theory, A. M. S. Transl., 10 (1962), 1–54, Transl. from Mat. Sbornik, 25 (1949), 107–150. First published by the A. M. S. in 1952 as Translation Number 71.  Google Scholar

[16]

M. Viana, Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents, Ann. of Math., 167 (2008), 643-680.  doi: 10.4007/annals.2008.167.643.  Google Scholar

[17]

M. Viana and K. Oliveira, Fundamentos da Teoria Ergódica, Coleção Fronteiras da Matemática. Sociedade Brasileira de Matemática, 2014. Google Scholar

[18]

M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge University Press, 2016. doi: 10.1017/CBO9781316422601.  Google Scholar

[19]

M. Viana and J. Yang, Physical measures and absolute continuity for one-dimensional center direction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 845-877.  doi: 10.1016/j.anihpc.2012.11.002.  Google Scholar

[20]

Y. Wang and J. You, Examples of discontinuity of lyapunov exponent in smooth quasiperiodic cocycles, Duke Math. J., 162 (2013), 2363-2412.  doi: 10.1215/00127094-2371528.  Google Scholar

[21]

D. Xu, Density of positive lyapunov exponents for symplectic cocycles, arXiv: 1506.05403 Google Scholar

show all references

References:
[1]

Vitor Araújo and Maria José Pacifico, Three Dimensional Flows, volume 114. Apr 2012. Google Scholar

[2]

A. Avila and R. Krikorian, Monotonic cocycles, Inventiones mathematicae, 202 (2015), 271– 331, arXiv: 1310.0703v1 doi: 10.1007/s00222-014-0572-6.  Google Scholar

[3]

A. Avila, J. Santamaria and M. Viana, Cocycles over partially hyperbolic maps, Preprint, https://institucional.impa.br/preprint/index.action, 2008. Google Scholar

[4]

A. AvilaJ. Santamaria and M. Viana, Holonomy invariance: Rough regularity and applications to Lyapunov exponents, Astérisque, 358 (2013), 13-74.   Google Scholar

[5]

A. Avila and M. Viana, Extremal Lyapunov exponents: An invariance principle and applications, Invent. Math., 181 (2010), 115-189.  doi: 10.1007/s00222-010-0243-1.  Google Scholar

[6]

A. AvilaM. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity Ⅰ: Geodesic flows, J. Eur. Math. Soc. (JEMS), 17 (2015), 1435-1462.  doi: 10.4171/JEMS/534.  Google Scholar

[7]

A. Avila, Density of positive Lyapunov exponents for sl(2, r)-cocycles, J. Amer. Math. Soc., 24 (2011), 999-1014.  doi: 10.1090/S0894-0347-2011-00702-9.  Google Scholar

[8]

L. Backes, A. Brown and C. Butler. Continuity of Lyapunov exponents for cocycles with invariant holonomies, arXiv: 1507.08978v2 Google Scholar

[9]

L. Backes and M. Poletti, Continuity of lyapunov exponents is equivalent to continuity of oseledets subspaces, Stochastics and Dynamics, 17 (2017), 1750047, 18pp. doi: 10.1142/S0219493717500472.  Google Scholar

[10]

M. Bessa, J. Bochi, M. Cambrainha, C. Matheus, P. Varandas and D. Xu. Positivity of the top lyapunov exponent for cocycles on semisimple lie groups over hyperbolic bases, Bulletin of the Brazilian Mathematical Society, New Series, 49 (2018), 73–87, arXiv: 1611.10158 doi: 10.1007/s00574-017-0048-6.  Google Scholar

[11]

J. Bochi, Genericity of zero Lyapunov exponents, Ergod. Th. & Dynam. Sys., 22 (2002), 1667-1696.  doi: 10.1017/S0143385702001165.  Google Scholar

[12]

M. Cambrainha, Generic Symplectic Cocycles are Hyperbolic, PhD thesis, IMPA, 2013. Google Scholar

[13]

C. Liang, K. Marin and J. Yang, Lyapunov exponents of partially hyperbolic volume-preserving maps with 2-dimensional center bundle, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2018, arXiv: 1604.05987 doi: 10.1016/j.anihpc.2018.01.007.  Google Scholar

[14]

V. I. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-210.   Google Scholar

[15]

V. A. Rokhlin, On the fundamental ideas of measure theory, A. M. S. Transl., 10 (1962), 1–54, Transl. from Mat. Sbornik, 25 (1949), 107–150. First published by the A. M. S. in 1952 as Translation Number 71.  Google Scholar

[16]

M. Viana, Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents, Ann. of Math., 167 (2008), 643-680.  doi: 10.4007/annals.2008.167.643.  Google Scholar

[17]

M. Viana and K. Oliveira, Fundamentos da Teoria Ergódica, Coleção Fronteiras da Matemática. Sociedade Brasileira de Matemática, 2014. Google Scholar

[18]

M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge University Press, 2016. doi: 10.1017/CBO9781316422601.  Google Scholar

[19]

M. Viana and J. Yang, Physical measures and absolute continuity for one-dimensional center direction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 845-877.  doi: 10.1016/j.anihpc.2012.11.002.  Google Scholar

[20]

Y. Wang and J. You, Examples of discontinuity of lyapunov exponent in smooth quasiperiodic cocycles, Duke Math. J., 162 (2013), 2363-2412.  doi: 10.1215/00127094-2371528.  Google Scholar

[21]

D. Xu, Density of positive lyapunov exponents for symplectic cocycles, arXiv: 1506.05403 Google Scholar

Figure 1.  definition of $z_n$ and $x'$
Figure 2.  definition $h:\mathcal{W}^c(p)\to \mathcal{W}^c(p)$ for class ${\bf{A}}$
Figure 3.  definition $h:\mathcal{W}^c(p)\to \mathcal{W}^c(p)$ for class ${\bf{B}}$
Figure 4.  perturbation of $H$
[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[3]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[6]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[7]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[8]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[9]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[10]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[11]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[12]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[13]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[14]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[15]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (99)
  • HTML views (101)
  • Cited by (3)

Other articles
by authors

[Back to Top]