October  2018, 38(10): 5245-5260. doi: 10.3934/dcds.2018232

Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings

Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, N. Plastira 100, Vassilika Vouton, GR - 700 13, Heraklion, Crete, Greece

Received  March 2018 Revised  June 2018 Published  July 2018

Collision avoidance is an interesting feature of the Cucker-Smale (CS) model of flocking that has been studied in many works, e.g. [2,1,4,6,7,20,21,22]. In particular, in the case of singular interactions between agents, as is the case of the CS model with communication weights of the type $ψ(s) = s^{-α}$ for $α ≥ 1$, it is important for showing global well-posedness of the underlying particle dynamics. In [4], a proof of the non-collision property for singular interactions is given in the case of the linear CS model, i.e. when the velocity coupling between agents $i,j$ is $v_{j}-v_{i}$. This paper can be seen as an extension of the analysis in [4]. We show that particles avoid collisions even when the linear coupling in the CS system has been substituted with the nonlinear term $Γ(·)$ introduced in [12] (typical examples being $Γ(v) = v|v|^{2(γ -1)}$ for $γ ∈ (\frac{1}{2},\frac{3}{2})$), and prove that no collisions can happen in finite time when $α ≥ 1$. We also show uniform estimates for the minimum inter-particle distance, for a communication weight with expanded singularity $ψ_{δ}(s) = (s-δ)^{-α}$, when $α ≥ 2γ$, $δ ≥ 0$.

Citation: Ioannis Markou. Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5245-5260. doi: 10.3934/dcds.2018232
References:
[1]

M. AguehR. Illner and A. Richardson, Analysis and simulation of a refined flocking and swarming model of Cucker-Smale type, Kinet. Relat. Models, 4 (2011), 1-16.  doi: 10.3934/krm.2011.4.1.  Google Scholar

[2]

S. M. AhnH. ChoiS.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.  doi: 10.4310/CMS.2012.v10.n2.a10.  Google Scholar

[3]

J. A. CarrilloY.-P. Choi and M. Hauray, Local well-posedness of the generalized Cucker-Smale model, ESAIM:Proc., 47 (2014), 17-35.  doi: 10.1051/proc/201447002.  Google Scholar

[4]

J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.  Google Scholar

[5]

Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.  Google Scholar

[6]

F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.  Google Scholar

[7]

F. Cucker and J.-G. Dong, A conditional, collision-avoiding, model for swarming, Discrete Contin. Dyn. Syst., 34 (2014), 1009-1020.  doi: 10.3934/dcds.2014.34.1009.  Google Scholar

[8]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.  Google Scholar

[9]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[10]

F. Cucker and S. Smale, On the mathematics of emergence, Japan J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[11]

R. ErbanJ. Haskovec and Y. Sun, A Cucker-Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.  Google Scholar

[12]

S.-Y. HaT. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55 (2010), 1679-1683.  doi: 10.1109/TAC.2010.2046113.  Google Scholar

[13]

S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction, J. Phys. A, 43 (2010), 315201, 19pp. doi: 10.1088/1751-8113/43/31/315201.  Google Scholar

[14]

S.-Y. HaK. Lee and D. Levy, Emergence of time asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.  Google Scholar

[15]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[16]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[17]

M. Hauray and P.-E. Jabin, Particles approximations of Vlasov equations with singular forces: Propagation of chaos, Ann. Sci. Éc. Norm. Supér., 48 (2015), 891-940.  doi: 10.24033/asens.2261.  Google Scholar

[18]

P.-E. Jabin, A review of the mean field limits for Vlasov equations, Kinet. Relat. Models, 7 (2014), 661-711.  doi: 10.3934/krm.2014.7.661.  Google Scholar

[19]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[20]

P. B. Mucha and J. Peszek, The Cucker-Smale equation: Singular communication weight, measure-valued solutions and weak-atomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273-308.  doi: 10.1007/s00205-017-1160-x.  Google Scholar

[21]

J. Peszek, Existence of piecewise weak solutions of a discrete Cucker-Smale's flocking model with a singular communication weight, J. Differential Equations, 257 (2014), 2900-2925.  doi: 10.1016/j.jde.2014.06.003.  Google Scholar

[22]

J. Peszek, Discrete Cucker-Smale flocking model with a weakly singular weight, SIAM J. Math. Anal., 47 (2015), 3671-3686.  doi: 10.1137/15M1009299.  Google Scholar

[23]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694-719.  doi: 10.1137/060673254.  Google Scholar

[24]

T. V. TonN. T. H. Linh and A. Yagi, Flocking and non-flocking behavior in a stochastic Cucker-Smale system, Anal. Appl., 12 (2014), 63-73.  doi: 10.1142/S0219530513500255.  Google Scholar

[25]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

show all references

References:
[1]

M. AguehR. Illner and A. Richardson, Analysis and simulation of a refined flocking and swarming model of Cucker-Smale type, Kinet. Relat. Models, 4 (2011), 1-16.  doi: 10.3934/krm.2011.4.1.  Google Scholar

[2]

S. M. AhnH. ChoiS.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.  doi: 10.4310/CMS.2012.v10.n2.a10.  Google Scholar

[3]

J. A. CarrilloY.-P. Choi and M. Hauray, Local well-posedness of the generalized Cucker-Smale model, ESAIM:Proc., 47 (2014), 17-35.  doi: 10.1051/proc/201447002.  Google Scholar

[4]

J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.  Google Scholar

[5]

Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.  Google Scholar

[6]

F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129.  doi: 10.1109/TAC.2011.2107113.  Google Scholar

[7]

F. Cucker and J.-G. Dong, A conditional, collision-avoiding, model for swarming, Discrete Contin. Dyn. Syst., 34 (2014), 1009-1020.  doi: 10.3934/dcds.2014.34.1009.  Google Scholar

[8]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.  Google Scholar

[9]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[10]

F. Cucker and S. Smale, On the mathematics of emergence, Japan J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[11]

R. ErbanJ. Haskovec and Y. Sun, A Cucker-Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.  Google Scholar

[12]

S.-Y. HaT. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55 (2010), 1679-1683.  doi: 10.1109/TAC.2010.2046113.  Google Scholar

[13]

S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction, J. Phys. A, 43 (2010), 315201, 19pp. doi: 10.1088/1751-8113/43/31/315201.  Google Scholar

[14]

S.-Y. HaK. Lee and D. Levy, Emergence of time asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.  Google Scholar

[15]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[16]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[17]

M. Hauray and P.-E. Jabin, Particles approximations of Vlasov equations with singular forces: Propagation of chaos, Ann. Sci. Éc. Norm. Supér., 48 (2015), 891-940.  doi: 10.24033/asens.2261.  Google Scholar

[18]

P.-E. Jabin, A review of the mean field limits for Vlasov equations, Kinet. Relat. Models, 7 (2014), 661-711.  doi: 10.3934/krm.2014.7.661.  Google Scholar

[19]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[20]

P. B. Mucha and J. Peszek, The Cucker-Smale equation: Singular communication weight, measure-valued solutions and weak-atomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273-308.  doi: 10.1007/s00205-017-1160-x.  Google Scholar

[21]

J. Peszek, Existence of piecewise weak solutions of a discrete Cucker-Smale's flocking model with a singular communication weight, J. Differential Equations, 257 (2014), 2900-2925.  doi: 10.1016/j.jde.2014.06.003.  Google Scholar

[22]

J. Peszek, Discrete Cucker-Smale flocking model with a weakly singular weight, SIAM J. Math. Anal., 47 (2015), 3671-3686.  doi: 10.1137/15M1009299.  Google Scholar

[23]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694-719.  doi: 10.1137/060673254.  Google Scholar

[24]

T. V. TonN. T. H. Linh and A. Yagi, Flocking and non-flocking behavior in a stochastic Cucker-Smale system, Anal. Appl., 12 (2014), 63-73.  doi: 10.1142/S0219530513500255.  Google Scholar

[25]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[6]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[7]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[8]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[9]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[10]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[11]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[12]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[13]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[14]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[15]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[16]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[19]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[20]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (115)
  • HTML views (125)
  • Cited by (6)

Other articles
by authors

[Back to Top]