\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dispersive effects of the incompressible viscoelastic fluids

  • * Corresponding author: Ruizhao Zi

    * Corresponding author: Ruizhao Zi
Abstract Full Text(HTML) Related Papers Cited by
  • We consider the Cauchy problem of the $N$ -dimensional incompressible viscoelastic fluids with $N≥2$ . It is shown that, in the low frequency part, this system possesses some dispersive properties derived from the one parameter group $e^{± it\Lambda}$ . Based on this dispersive effect, we construct global solutions with large initial velocity concentrating on the low frequency part. Such kind of solution has never been seen before in the literature even for the classical incompressible Navier-Stokes equations.

    Mathematics Subject Classification: Primary: 76A10, 76D03.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Abidi, Équation de Navier-Stokes avec densité et viscosité variables dans l'espace critique, Rev. Mat. Iberoam., 23 (2007), 537-586.  doi: 10.4171/RMI/505.
    [2] H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), 16-98.  doi: 10.1007/s000210050018.
    [3] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.
    [4] J.-M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles nonlinéaires, Annales Scinentifiques de l'école Normale Supérieure, 14 (1981), 209-246.  doi: 10.24033/asens.1404.
    [5] M. Cannone, Y. Meyer and F. Planchon, Solutions autosimilaires des équations de Navier-Stokes, Séminaire "Équations aux Dérivées Partielles" de l'École Polytechnique, 1993–1994, Exp. No. Ⅷ, 12 pp., école Polytech., Palaiseau, 1994. doi: 10.1108/09533239410052824.
    [6] M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoamericana, 13 (1997), 515-541.  doi: 10.4171/RMI/229.
    [7] J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 1 (2004), 53-135.
    [8] J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.
    [9] F. Charve and R. Danchin, A global existence result for the compressible Navier- Stokes Navier-Stokes equations in the critical Lp framework, Arch. Rational Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.
    [10] Q. L. ChenC. X. Miao and Z. F. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.  doi: 10.1002/cpa.20325.
    [11] Y. M. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Comm. Partial Differerntial Equations, 31 (2006), 1793-1810.  doi: 10.1080/03605300600858960.
    [12] R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.
    [13] R. Danchin, Zero mach numer limit in critical spaces for compresible Navier-Stokes equations, Ann. Scitent. Éc. Norm. Sup., 35 (2002), 27-75.  doi: 10.1016/S0012-9593(01)01085-0.
    [14] R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh, 133 (2003), 1311-1334.  doi: 10.1017/S030821050000295X.
    [15] R. Danchin, On the uniqueness in critical spaces for compressible Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl., 12 (2005), 111-128.  doi: 10.1007/s00030-004-2032-2.
    [16] D. Y. Fang, T. Zhang and R. Z. Zi, Global solutions to the isentropic compressible Navier-Stokes equations with a class of large initial data, arXiv: 1608.06447.
    [17] H. Fujita and T. Kato, On the Navier-Stokes initial value problem Ⅰ, Arch. Ration. Mech. Anal., 16 (1964), 269-315.  doi: 10.1007/BF00276188.
    [18] Y. Giga, Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equ., 62 (1986), 186-212.  doi: 10.1016/0022-0396(86)90096-3.
    [19] B. Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, Journal of Differential Equations, 251 (2011), 2262-2295.  doi: 10.1016/j.jde.2011.06.013.
    [20] B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Rational Mech. Anal., 202 (2011), 427-460.  doi: 10.1007/s00205-011-0430-2.
    [21] D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603-676.  doi: 10.1512/iumj.1995.44.2003.
    [22] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.  doi: 10.1002/mana.3210040121.
    [23] X. P. Hu and F. H. Lin, On the Cauchy problem for two dimensional incompressible viscoelastic flows, arXiv: 1601.03497.
    [24] T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.  doi: 10.1007/BF01174182.
    [25] A. A. Kiselev and O. A. Ladyzenskaya, On the existence of uniqueness of solutions of the non-stationary problems for flows of non-compressible fluids, Am. Math. Soc. Transl. Ser. 2., 24 (1963), 79-106.  doi: 10.1090/trans2/024/05.
    [26] H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.
    [27] Z. Lei, On 2D viscoelasticity with small strain, Arch. Ration. Mech. Anal., 198 (2010), 13-37.  doi: 10.1007/s00205-010-0346-2.
    [28] Z. LeiC. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain, Commun. Math. Sci., 5 (2007), 595-616.  doi: 10.4310/CMS.2007.v5.n3.a5.
    [29] Z. LeiC. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398.  doi: 10.1007/s00205-007-0089-x.
    [30] Z. Lei and Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37 (2005), 797-814.  doi: 10.1137/040618813.
    [31] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.
    [32] F. H. LinC. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471.  doi: 10.1002/cpa.20074.
    [33] F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008), 539-558.  doi: 10.1002/cpa.20219.
    [34] J. Z. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system, Nonlinear Analysis, 72 (2010), 3222-3234.  doi: 10.1016/j.na.2009.12.022.
    [35] T. C. Sideris and B. Thomases, Global existense for 3D incompressible isotropic elastodynamics via the incompressible limit, Comm. Pure Appl. Math., 58 (2005), 750-788.  doi: 10.1002/cpa.20049.
    [36] T. Zhang and D. Y. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical $L^p$ framework, SIAM J. Math. Anal., 44 (2012), 2266-2288.  doi: 10.1137/110851742.
    [37] T. Zhang, Global strong solutions for equations related to the incompressible viscoelastic fluids with a class of large initial data, Nonlinear Analysis, 100 (2014), 59-77.  doi: 10.1016/j.na.2014.01.014.
  • 加载中
SHARE

Article Metrics

HTML views(386) PDF downloads(325) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return