October  2018, 38(10): 5339-5349. doi: 10.3934/dcds.2018235

Direct method of moving planes for logarithmic Laplacian system in bounded domains

School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District Beijing 100083, China

* Corresponding author: Baiyu Liu

Received  May 2018 Revised  May 2018 Published  July 2018

Fund Project: The author is supported by the National Natural Science Foundation of China (No.11671031) and the Fundamental Research Funds for the Central Universities FRF-BR-17-013A.

Chen, Li and Li [Adv. Math., 308(2017), pp. 404-437] developed a direct method of moving planes for the fractional Laplacian. In this paper, we extend their method to the logarithmic Laplacian. We consider both the logarithmic equation and the system. To carry out the method, we establish two kinds of narrow region principle for the equation and the system separately. Then using these narrow region principles, we give the radial symmetry results for the solutions to semi-linear logarithmic Laplacian equations and systems on the ball.

Citation: Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235
References:
[1]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasi. Mat., 22 (1991), 1-37.  doi: 10.1007/BF01244896.  Google Scholar

[2]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, P. Roy. Soc. Edinb. A, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[3]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[5]

W. X. Chen and C. M. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. Dyn. Sys., Springfield, United States, 2010.  Google Scholar

[6]

W. X. ChenC. M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[7]

W. X. ChenC. M. Li and B. Ou, Classification of solutions for a system of integral equations, Commun. Part. Diff. Eq., 30 (2005), 59-65.  doi: 10.1081/PDE-200044445.  Google Scholar

[8]

W. X. ChenC. M. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Cont. Dyn.-A, 12 (2005), 347-354.   Google Scholar

[9]

W. X. ChenC. M. Li and B. Ou, Classification of solutions for an integral equationr, Commun. Pur. Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[10]

H. Y. Chen and T. Weth, Qualitative properties of Logarithmic Laplacian and Dirichlet elliptic equations, preprint, arXiv: 1710.03416v3 Google Scholar

[11]

W. X. Chen and J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differ. Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar

[12]

R. Cont and P. Tankov,, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2004.  Google Scholar

[13]

G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., vol. 219, Springer-Verlag, Berlin-New York, 1976. Translated from French by C. W. John.  Google Scholar

[14]

M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Func. Anal., 263 (2012), 2205-2227.  doi: 10.1016/j.jfa.2012.06.018.  Google Scholar

[15]

P. FelmerA. Quass and J. G. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, P. Roy. Soc. Edinb. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[16]

P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commum. Contemp. Math., 16 (2014), 1350023, 24pp. doi: 10.1142/S0219199713500235.  Google Scholar

[17]

B. GidasWei-Ming Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.  Google Scholar

[18]

S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pur. Appl., 195 (2016), 273-291.  doi: 10.1007/s10231-014-0462-y.  Google Scholar

[19]

C. Jin and C. Li, Symmetry of solutions to some integral equations, P.Am. Math. Soc., 134 (2006), 1661-1670.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[20]

Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.   Google Scholar

[21]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057.  doi: 10.1137/080712301.  Google Scholar

[22]

B. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Anal.-Theor., 146 (2016), 120-135.  doi: 10.1016/j.na.2016.08.022.  Google Scholar

[23]

L. Ma and D. Z. Chen, A Liouville type theorem for an integral system, Commun. Pur. Appl. Anal., 5 (2006), 855-859.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[24]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[25]

E. Milakis and L. Silvestre, Regularity for the nonlinear Signorini problem, Adv. Math., 217 (2008), 1301-1312.  doi: 10.1016/j.aim.2007.08.009.  Google Scholar

[26]

A. Quaas and A. Xia, A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian, Nonlinearity, 29 (2016), 2279-2297.  doi: 10.1088/0951-7715/29/8/2279.  Google Scholar

[27]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pur. Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[28]

J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, in Nonlinear Partial Differential Equations, (eds.) 7 Springer, Berlin, Heidelberg, (2012), 271–298. doi: 10.1007/978-3-642-25361-4_15.  Google Scholar

[29]

X. H. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var. Partial. Dif., 46 (2013), 75-95.  doi: 10.1007/s00526-011-0474-z.  Google Scholar

[30]

R. ZhuoW. X. ChenX. W. Cui and Z. X. Yuan, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Cont. Dyn.-A, 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.  Google Scholar

show all references

References:
[1]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasi. Mat., 22 (1991), 1-37.  doi: 10.1007/BF01244896.  Google Scholar

[2]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, P. Roy. Soc. Edinb. A, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[3]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[5]

W. X. Chen and C. M. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. Dyn. Sys., Springfield, United States, 2010.  Google Scholar

[6]

W. X. ChenC. M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[7]

W. X. ChenC. M. Li and B. Ou, Classification of solutions for a system of integral equations, Commun. Part. Diff. Eq., 30 (2005), 59-65.  doi: 10.1081/PDE-200044445.  Google Scholar

[8]

W. X. ChenC. M. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Cont. Dyn.-A, 12 (2005), 347-354.   Google Scholar

[9]

W. X. ChenC. M. Li and B. Ou, Classification of solutions for an integral equationr, Commun. Pur. Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[10]

H. Y. Chen and T. Weth, Qualitative properties of Logarithmic Laplacian and Dirichlet elliptic equations, preprint, arXiv: 1710.03416v3 Google Scholar

[11]

W. X. Chen and J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differ. Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar

[12]

R. Cont and P. Tankov,, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2004.  Google Scholar

[13]

G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., vol. 219, Springer-Verlag, Berlin-New York, 1976. Translated from French by C. W. John.  Google Scholar

[14]

M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Func. Anal., 263 (2012), 2205-2227.  doi: 10.1016/j.jfa.2012.06.018.  Google Scholar

[15]

P. FelmerA. Quass and J. G. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, P. Roy. Soc. Edinb. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[16]

P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commum. Contemp. Math., 16 (2014), 1350023, 24pp. doi: 10.1142/S0219199713500235.  Google Scholar

[17]

B. GidasWei-Ming Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.  Google Scholar

[18]

S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pur. Appl., 195 (2016), 273-291.  doi: 10.1007/s10231-014-0462-y.  Google Scholar

[19]

C. Jin and C. Li, Symmetry of solutions to some integral equations, P.Am. Math. Soc., 134 (2006), 1661-1670.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[20]

Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.   Google Scholar

[21]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057.  doi: 10.1137/080712301.  Google Scholar

[22]

B. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Anal.-Theor., 146 (2016), 120-135.  doi: 10.1016/j.na.2016.08.022.  Google Scholar

[23]

L. Ma and D. Z. Chen, A Liouville type theorem for an integral system, Commun. Pur. Appl. Anal., 5 (2006), 855-859.  doi: 10.3934/cpaa.2006.5.855.  Google Scholar

[24]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[25]

E. Milakis and L. Silvestre, Regularity for the nonlinear Signorini problem, Adv. Math., 217 (2008), 1301-1312.  doi: 10.1016/j.aim.2007.08.009.  Google Scholar

[26]

A. Quaas and A. Xia, A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian, Nonlinearity, 29 (2016), 2279-2297.  doi: 10.1088/0951-7715/29/8/2279.  Google Scholar

[27]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pur. Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[28]

J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, in Nonlinear Partial Differential Equations, (eds.) 7 Springer, Berlin, Heidelberg, (2012), 271–298. doi: 10.1007/978-3-642-25361-4_15.  Google Scholar

[29]

X. H. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var. Partial. Dif., 46 (2013), 75-95.  doi: 10.1007/s00526-011-0474-z.  Google Scholar

[30]

R. ZhuoW. X. ChenX. W. Cui and Z. X. Yuan, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Cont. Dyn.-A, 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.  Google Scholar

[1]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[4]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[5]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[6]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[7]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[10]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[11]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[14]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[15]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[16]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[17]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[18]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[19]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (210)
  • HTML views (132)
  • Cited by (2)

Other articles
by authors

[Back to Top]