In this paper, we study the following nonlinear Dirac equation
$\begin{equation*}-i\varepsilonα·\nabla w+aβ w+V(x)w = g(|w|)w, \ x∈ \mathbb{R}^3, \ {\rm for}\ w∈ H^1(\mathbb R^3, \mathbb C^4), \end{equation*}$
where $a > 0$ is a constant, $α = (α_1, α_2, α_3)$, $α_1, α_2, α_3$ and $β$ are $4×4$ Pauli-Dirac matrices. Under the assumptions that $V$ and $g$ are continuous but are not necessarily of class $C^1$, when $g$ is super-linear growth at infinity we obtain the existence of semiclassical solutions, which converge to the least energy solutions of its limit problem as $\varepsilon \to 0$.
Citation: |
A. Ambrosetti
, A. Malchiodi
and W. M. Ni
, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres Ⅰ, Comm. Math. Phys., 235 (2003)
, 427-466.
doi: 10.1007/s00220-003-0811-y.![]() ![]() ![]() |
|
T. Bartsch
and Y. H. Ding
, Solutions of nonlinear Dirac equations, J. Differential Equations, 226 (2006)
, 210-249.
doi: 10.1016/j.jde.2005.08.014.![]() ![]() ![]() |
|
J. Byeon
and Z.-Q. Wang
, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 165 (2002)
, 295-316.
doi: 10.1007/s00205-002-0225-6.![]() ![]() ![]() |
|
J. Byeon
and Z.-Q. Wang
, Standing waves with a critical frequency for nonlinear Schrödinger equations. Ⅱ, Calc. Var. Partial Differential Equations, 18 (2003)
, 207-219.
doi: 10.1007/s00526-002-0191-8.![]() ![]() ![]() |
|
R. Dautray and J. L. Lions,
Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3, Springer, Berlin, 1990.
![]() ![]() |
|
P. D'Avenia
, A. Pomponio
and D. Ruiz
, Semiclassical states for the onlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012)
, 4600-4633.
doi: 10.1016/j.jfa.2012.03.009.![]() ![]() ![]() |
|
M. Del Pino
and P. Felmer
, Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149 (1997)
, 245-265.
doi: 10.1006/jfan.1996.3085.![]() ![]() ![]() |
|
M. Del Pino
and P. Felmer
, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Lináire, 15 (1998)
, 127-149.
doi: 10.1016/S0294-1449(97)89296-7.![]() ![]() ![]() |
|
M. Del Pino
, M. Kowalczyk
and J. C. Wei
, Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math., 60 (2007)
, 113-146.
doi: 10.1002/cpa.20135.![]() ![]() ![]() |
|
Y. H. Ding,
Variational Methods for Strongly Indefinite Problems, Interdiscip. Math. Sci., vol. 7. World Scientific Publ., Singapore, 2007.
doi: 10.1142/9789812709639.![]() ![]() ![]() |
|
Y. H. Ding
, Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010)
, 1015-1034.
doi: 10.1016/j.jde.2010.03.022.![]() ![]() ![]() |
|
Y. H. Ding
, C. Lee
and B. Ruf
, On semiclassical states of a nonlinear Dirac equation, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013)
, 765-790.
doi: 10.1017/S0308210511001752.![]() ![]() ![]() |
|
Y. H. Ding
and X. Y. Liu
, Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations, 252 (2012)
, 4962-4987.
doi: 10.1016/j.jde.2012.01.023.![]() ![]() ![]() |
|
Y. H. Ding
and B. Ruf
, Solutions of a nonlinear Dirac equation with external fields, Arch. Ration. Mech. Anal., 190 (2008)
, 57-82.
doi: 10.1007/s00205-008-0163-z.![]() ![]() ![]() |
|
Y. H. Ding
and B. Ruf
, Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012)
, 3755-3785.
doi: 10.1137/110850670.![]() ![]() ![]() |
|
Y. H. Ding
and J. C. Wei
, Stationary states of nonlinear Dirac equations with general potentials, J. Math. Phys., 20 (2008)
, 1007-1032.
doi: 10.1142/S0129055X0800350X.![]() ![]() ![]() |
|
Y. H. Ding, J. C. Wei and T. Xu, Existence and concentration of semi-classical solutions for a nonlinear Maxwell-Dirac system,
J. Math. Phys., 54 (2013), 061505, 33pp.
doi: 10.1063/1.4811541.![]() ![]() ![]() |
|
Y. H. Ding
and T. Xu
, Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Rational Mech. Anal., 216 (2015)
, 415-447.
doi: 10.1007/s00205-014-0811-4.![]() ![]() ![]() |
|
M.J. Esteban
, M. Lewin
and E. Séré
, Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc. (N.S.), 45 (2008)
, 535-593.
doi: 10.1090/S0273-0979-08-01212-3.![]() ![]() ![]() |
|
M. J. Esteban
and E. Séré
, Stationary states of the nonlinear Dirac equation: A variational approach, Commun. Math. Phys., 171 (1995)
, 323-350.
doi: 10.1007/BF02099273.![]() ![]() ![]() |
|
G. M. Figueiredo
and M. T. O. Pimenta
, Existence of ground state solutions to Dirac equations with vanishing potentials at infinity, J. Differential Equations, 262 (2017)
, 486-505.
doi: 10.1016/j.jde.2016.09.034.![]() ![]() ![]() |
|
A. Floer
and A. Weistein
, Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986)
, 397-408.
doi: 10.1016/0022-1236(86)90096-0.![]() ![]() ![]() |
|
D. Gilbarg and N. Trudinger,
Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg New York, 1997.
![]() ![]() |
|
L. Jeanjean
and K. Tanaka
, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations, 21 (2004)
, 287-318.
doi: 10.1007/s00526-003-0261-6.![]() ![]() ![]() |
|
X. Kang
and J. C. Wei
, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differ. Equ., 5 (2000)
, 899-928.
![]() ![]() |
|
Y. Y. Li
, On a singularly perturbed elliptic equation, Adv. Diff. Equ., 2 (1997)
, 955-980.
![]() ![]() |
|
P. L. Lions
, The concentration-compactness principle in the calculus of variations. The locally compact case, parts 1 and 2, Ann. Inst. H. Poincaré Anual. Non Linéair, 1 (1984)
, 109-145,223-283.
doi: 10.1016/S0294-1449(16)30422-X.![]() ![]() ![]() |
|
S. B. Liu
, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012)
, 1-9.
doi: 10.1007/s00526-011-0447-2.![]() ![]() ![]() |
|
F. Merle
, Existence of stationary states for nonlinear Dirac equations, J. Differential Equations, 74 (1988)
, 50-68.
doi: 10.1016/0022-0396(88)90018-6.![]() ![]() ![]() |
|
Y. G. Oh
, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$, Comm. Partial. Diff. Eq., 13 (1988)
, 1499-1519.
doi: 10.1080/03605308808820585.![]() ![]() ![]() |
|
A. Pankov
, On decay of solutions to nonlinear Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008)
, 2565-2570.
doi: 10.1090/S0002-9939-08-09484-7.![]() ![]() ![]() |
|
P. H. Rabinowitz
, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992)
, 270-292.
doi: 10.1007/BF00946631.![]() ![]() ![]() |
|
A. Szulkin
and T. Weth
, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009)
, 3802-3822.
doi: 10.1016/j.jfa.2009.09.013.![]() ![]() ![]() |
|
X. Wang
, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993)
, 229-244.
doi: 10.1007/BF02096642.![]() ![]() ![]() |
|
X. Wang
and B. Zeng
, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997)
, 633-655.
doi: 10.1137/S0036141095290240.![]() ![]() ![]() |
|
J. Zhang, X. Tang and W. Zhang, Ground state solutions for nonperiodic Dirac equation with superquadratic nonlinearity,
J. Math. Phys., 54 (2013), 101502, 10pp.
doi: 10.1063/1.4824132.![]() ![]() ![]() |
|
J. Zhang
, X. Tang
and W. Zhang
, On ground state solutions for superlinear Dirac equation, Acta Math. Sci. Ser. B Engl. Ed., 34 (2014)
, 840-850.
doi: 10.1016/S0252-9602(14)60054-0.![]() ![]() ![]() |