\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Periodic solutions for the N-vortex problem via a superposition principle

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • We examine the $N$ -vortex problem on general domains $Ω\subset\mathbb{R}^2$ concerning the existence of nonstationary collision-free periodic solutions. The problem in question is a first order Hamiltonian system of the form

    $Γ_k\dot{z}_k = J\nabla_{z_k}H(z_1,...,z_N),\ \ \ \ k = 1,...,N,$

    where $Γ_k∈\mathbb{R}\setminus\{0\}$ is the strength of the $k$ th vortex at position $z_k(t)∈Ω$ , $J∈\mathbb{R}^{2× 2}$ is the standard symplectic matrix and

    $H(z_1,...,z_N) = -\frac{1}{2π}\sum\limits_{\underset{k≠ j}{k,j = 1}}^NΓ_jΓ_k\log|z_k-z_j|-\sum\limits_{k,j = 1}^NΓ_jΓ_k g(z_k,z_j)$

    with some regular and symmetric, but in general not explicitely known function $g:Ω×Ω \to \mathbb{R}$ . The investigation relies on the idea to superpose a stationary solution of a system of less than $N$ vortices and several clusters of vortices that are close to rigidly rotating configurations of the whole-plane system. We establish general conditions on both, the stationary solution and the configurations, under which multiple $T$ -periodic solutions are shown to exist for every $T>0$ small enough. The crucial condition holds in generic bounded domains and is explicitly verified for an example in the unit disc $Ω = B_1(0)$ . In particular we therefore obtain various examples of periodic solutions in $B_1(0)$ that are not rigidly rotating configurations.

    Mathematics Subject Classification: Primary: 37J45; Secondary: 37N10, 76B47.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  This diagram illustrates the superposition idea. The $2$-vortex problem in the unit disc admits a stationary solution with $\Gamma^1 = -\Gamma^2$, cf. Example 1.2, say $\Gamma^1 = -2$ (blue star), $\Gamma^2 = 2$ (red star). As rigidly rotating configurations on $\mathbb{R}^2$ we take here for simplicity two identical vortices for $\Gamma^1$ and $\Gamma^2$, i.e. $\Gamma^1_1 = \Gamma^1_2 = -1$ rotate on the blue circle in clockwise direction and $\Gamma^2_1 = \Gamma^2_2 = 1$ rotate on the red circle in counterclockwise direction. The result on the right-hand side is a periodic solution of the $4$-vortex system in the disc with vorticities $\Gamma^1_1,\Gamma^1_2,\Gamma^2_1,\Gamma^2_2$, where each pair of vortices moves along a deformed circle in the same orientation as before. The shown trajectory is the actual numerically computed trajectory of the $4$-vortex problem. Suitable initial conditions can in this case be found due to symmetry considerations

  •   H. Aref , Relative equilibria of point vortices and the fundamental theorem of algebra, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011) , 2168-2184.  doi: 10.1098/rspa.2010.0580.
      H. Aref , P. K. Newton , M. A. Stremler , T. Tokieda  and  D. L. Vainchtein , Vortex crystals, Adv. Appl. Mech., 39 (2003) , 1-79.  doi: 10.1016/S0065-2156(02)39001-X.
      T. Bartsch , A generalization of the Weinstein-Moser theorems on periodic orbits of a Hamiltonian system near an equilibrium, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997) , 691-718.  doi: 10.1016/S0294-1449(97)80130-8.
      T. Bartsch  and  Q. Dai , Periodic solutions of the N-vortex Hamiltonian system in planar domains, J. Diff. Equ., 260 (2016) , 2275-2295.  doi: 10.1016/j.jde.2015.10.002.
      T. Bartsch , Q. Dai  and  B. Gebhard , Periodic solutions of N-vortex type Hamiltonian systems near the domain boundary, SIAM J. Appl. Math., 78 (2018) , 977-995.  doi: 10.1137/16M1107085.
      T. Bartsch  and  B. Gebhard , Global continua of periodic solutions of singular first-order Hamiltonian systems of N-vortex type, Math. Ann., 369 (2017) , 627-651.  doi: 10.1007/s00208-016-1505-z.
      T. Bartsch, A. M. Micheletti and A. Pistoia, The Morse property for functions of Kirchhoff-Routh path type, to appear: Discrete Contin. Dyn. Syst. Ser. S.
      T. Bartsch  and  A. Pistoia , Critical points of the N-vortex Hamiltonian in bounded planar domains and steady state solutions of the incompressible Euler equations, SIAM J. Appl. Math., 75 (2015) , 726-744.  doi: 10.1137/140981253.
      T. Bartsch , A. Pistoia  and  T. Weth , N-vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the sinh-poisson and the Lane-Emden-Fowler equations, Comm. Math. Phys., 297 (2010) , 653-686.  doi: 10.1007/s00220-010-1053-4.
      T. Bartsch  and  M. Sacchet , Periodic solutions with prescribed minimal period of vortex type problems in domains, Nonlinearity, 31 (2018) , 2156-2172.  doi: 10.1088/1361-6544/aaaf2d.
      D. Cao , Z. Liu  and  J. Wei , Regularization of point vortices pairs for the Euler equation in dimension two, Arch. Rat. Mech. Anal., 212 (2014) , 179-217.  doi: 10.1007/s00205-013-0692-y.
      O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik-Schnirelmann Category, American Mathematical Society, Providence Rhode Island, 2003. doi: 10.1090/surv/103.
      M. del Pino , M. Kowalczyk  and  M. Musso , Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations, 24 (2005) , 47-81.  doi: 10.1007/s00526-004-0314-5.
      P. Esposito , M. Grossi  and  A. Pistoia , On the existence of blowing-up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005) , 227-257.  doi: 10.1016/j.anihpc.2004.12.001.
      M. Flucher, Variational Problems with Concentration, Birkhäuser, Basel Boston Berlin, 1999. doi: 10.1007/978-3-0348-8687-1.
      M. Gelantalis and P. Sternberg, Rotating 2N-vortex solutions to the Gross-Pitaevskii equation on $ S^2$, J. Math. Phys., 53 (2012), 083701, 24pp. doi: 10.1063/1.4739748.
      R. L. Jerrard  and  H. M. Soner , Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech. Anal., 142 (1998) , 99-125.  doi: 10.1007/s002050050085.
      K. Khanin , Quasi-periodic motions of vortex systems, Phys. D, 4 (1982) , 261-269.  doi: 10.1016/0167-2789(82)90067-7.
      G. R. Kirchhoff, Vorlesungen Über Mathematische Physik, Teubner, Leipzig, 1876.
      C. Kuhl , Symmetric equilibria for the N-vortex problem, J. Fixed Point Theory Appl., 17 (2015) , 597-624.  doi: 10.1007/s11784-015-0242-3.
      C. Kuhl , Equilibria for the N-vortex-problem in a general bounded domain, J. Math. Anal. Appl., 433 (2016) , 1531-1560.  doi: 10.1016/j.jmaa.2015.08.055.
      M. Kurzke , C. Melcher , R. Moser  and  D. Spirn , Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation, Arch. Rat. Mech. Anal., 199 (2011) , 843-888.  doi: 10.1007/s00205-010-0356-0.
      C. C. Lin , On the motion of vortices in two dimensions i. Existence of the Kirchhoff-Routh function, Proc. Nat. Acad. Sci. U. S. A., 27 (1941) , 570-575. 
      C. C. Lin , On the motion of vortices in two dimensions ii. Some further investigations on the Kirchhoff-Routh function, Proc. Nat. Acad. Sci. U. S. A., 27 (1941) , 575-577. 
      C. Marchioro and M. Pulvirenti, Vortex Methods in Two-Dimensional Fluid Dynamics, Springer, Berlin Heidelberg, 1984.
      C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Springer, New York, 1994. doi: 10.1007/978-1-4612-4284-0.
      J. Moser , Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math., 29 (1976) , 727-747.  doi: 10.1002/cpa.3160290613.
      P. K. Newton, The N-Vortex Problem, Springer, New York, 2001. doi: 10.1007/978-1-4684-9290-3.
      G. E. Roberts , Stability of relative equilibria in the planar N-vortex problem, SIAM J. Appl. Dyn. Sys., 12 (2013) , 1114-1134.  doi: 10.1137/130907434.
      E. J. Routh , Some applications of conjugate functions, Proc. London Math. Soc., 12 (1880) , 73-89.  doi: 10.1112/plms/s1-12.1.73.
      P. G. Saffman, Vortex Dynamics, Cambridge University Press, 1992.
      R. Venkatraman, Periodic orbits of Gross-Pitaevskii in the disc with vortices following point vortex flow, Calc. Var. Partial Differential Equations, 56 (2017), Art. 64, 35 pp. doi: 10.1007/s00526-017-1168-y.
      A. Weinstein , Normal modes for nonlinear Hamiltonian systems, Inventiones mathematicae, 20 (1973) , 47-57.  doi: 10.1007/BF01405263.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(526) PDF downloads(269) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return