This article is concerned with the large data global regularity for the equivariant case of the classical Skyrme model and proves that this is valid for initial data in $H^s \times H^{s-1}(\mathbb{R}^3)$ with $s>7/2$.
Citation: |
J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, 1976, Grundlehren der Mathematischen Wissenschaften, No. 223.
![]() ![]() |
|
P. Bizoń, T. Chmaj and A. Rostworowski, Asymptotic stability of the skyrmion, Phys. Rev. D, 75 (2007), 121702, 5 pp.
doi: 10.1103/PhysRevD.75.121702.![]() ![]() ![]() |
|
J. Bourgain
and D. Li
, On an endpoint Kato-Ponce inequality, Differential Integral Equations, 27 (2014)
, 1037-1072.
![]() ![]() |
|
Y. Cho
and T. Ozawa
, Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009)
, 355-365.
doi: 10.1142/S0219199709003399.![]() ![]() ![]() |
|
M. Creek, Large-Data Global Well-Posedness for the (1+2)-Dimensional Equivariant Faddeev Model, Thesis (Ph. D.)–University of Rochester. 2014, arXiv: 1310.4708.
![]() ![]() |
|
M. Creek
, R. Donninger
, W. Schlag
and S. Snelson
, Linear stability of the Skyrmion, Int. Math. Res. Not. IMRN, (2017)
, 2497-2537.
doi: 10.1093/imrn/rnw114.![]() ![]() ![]() |
|
D.-A. Geba and M. G. Grillakis, An Introduction to the Theory of Wave Maps and Related Geometric Problems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.
![]() ![]() |
|
D.-A. Geba
, K. Nakanishi
and S. G. Rajeev
, Global well-posedness and scattering for Skyrme wave maps, Commun. Pure Appl. Anal., 11 (2012)
, 1923-1933.
doi: 10.3934/cpaa.2012.11.1923.![]() ![]() ![]() |
|
M. Gell-Mann
and M. M. Lévy
, The axial vector current in beta decay, Nuovo Cimento (10), 16 (1960)
, 705-726.
doi: 10.1007/BF02859738.![]() ![]() ![]() |
|
L. Grafakos
and S. Oh
, The Kato-Ponce inequality, Comm. Partial Differential Equations, 39 (2014)
, 1128-1157.
doi: 10.1080/03605302.2013.822885.![]() ![]() ![]() |
|
L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, vol. 26 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin, 1997.
![]() ![]() |
|
L. V. Kapitanskiǐ
and O. A. Ladyzhenskaya
, The Coleman principle for finding stationary points of invariant functionals, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 127 (1983)
, 84-102.
![]() ![]() |
|
D. Li, Global wellposedness of hedgehog solutions for the ($3+1$) Skyrme model, 2012, Preprint, arXiv: 1208.4977.
![]() |
|
D. Li, On Kato-Ponce and fractional Leibniz, 2016, Preprint, arXiv: 1609.01780.
![]() |
|
N. S. Manton and P. M. Sutcliffe, Topological Solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511617034.![]() ![]() ![]() |
|
J. B. McLeod
and W. C. Troy
, The Skyrme model for nucleons under spherical symmetry, Proc. Roy. Soc. Edinburgh Sect. A, 118 (1991)
, 271-288.
doi: 10.1017/S0308210500029085.![]() ![]() ![]() |
|
B. Opic and A. Kufner, Hardy-type Inequalities vol. 219 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow, 1990.
![]() ![]() |
|
J. Shatah
, Weak solutions and development of singularities of the $\rm SU(2)$ $σ$-model, Comm. Pure Appl. Math., 41 (1988)
, 459-469.
doi: 10.1002/cpa.3160410405.![]() ![]() ![]() |
|
T. H. R. Skyrme
, A non-linear field theory, Proc. Roy. Soc. London Ser. A, 260 (1961)
, 127-138.
doi: 10.1098/rspa.1961.0018.![]() ![]() ![]() |
|
T. H. R. Skyrme
, Particle states of a quantized meson field, Proc. Roy. Soc. Ser. A, 262 (1961)
, 237-245.
doi: 10.1098/rspa.1961.0115.![]() ![]() ![]() |
|
T. H. R. Skyrme
, A unified field theory of mesons and baryons, Nucl. Phys., 31 (1962)
, 556-569.
doi: 10.1016/0029-5582(62)90775-7.![]() ![]() ![]() |
|
W. A. Strauss
, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977)
, 149-162.
doi: 10.1007/BF01626517.![]() ![]() ![]() |
|
N. Turok
and D. Spergel
, Global texture and the microwave background, Phys. Rev. Lett., 64 (1990)
, 2736-2739.
doi: 10.1103/PhysRevLett.64.2736.![]() ![]() |
|
W. W.-Y. Wong, Regular hyperbolicity, dominant energy condition and causality for Lagrangian theories of maps, Classical Quantum Gravity, 28 (2011), 215008, 23pp.
doi: 10.1088/0264-9381/28/21/215008.![]() ![]() ![]() |