\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hopf-Tsuji-Sullivan dichotomy for quotients of Hadamard spaces with a rank one isometry

  • * Corresponding author: Gabriele Link

    * Corresponding author: Gabriele Link
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Let $X$ be a proper Hadamard space and $\Gamma <{\text{Is}}(X)$ a non-elementary discrete group of isometries with a rank one isometry. We discuss and prove Hopf-Tsuji-Sullivan dichotomy for the geodesic flow on the set of parametrized geodesics of the quotient $\Gamma \backslash X$ and with respect to Ricks' measure introduced in [35]. This generalizes previous work of the author and J. C. Picaud on Hopf-Tsuji-Sullivan dichotomy in the analogous manifold setting and with respect to Knieper's measure.

    Mathematics Subject Classification: Primary: 37D40, 20F67; Secondary: 37D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   J. Aaronson  and  M. Denker , The Poincaré series of $\mathbb C\setminus \mathbb Z$, Ergodic Theory Dynam. Systems, 19 (1999) , 1-20.  doi: 10.1017/S0143385799126592.
      J. Aaronson  and  D. Sullivan , Rational ergodicity of geodesic flows, Ergodic Theory Dynam. Systems, 4 (1984) , 165-178.  doi: 10.1017/S0143385700002364.
      W. Ballmann , Axial isometries of manifolds of nonpositive curvature, Math. Ann., 259 (1982) , 131-144.  doi: 10.1007/BF01456836.
      W. Ballmann , Nonpositively curved manifolds of higher rank, Ann. of Math. (2), 122 (1985) , 597-609.  doi: 10.2307/1971331.
      W. Ballmann, Lectures on Spaces of Nonpositive Curvature, vol. 25 of DMV Seminar, Birkhäuser Verlag, Basel, 1995, With an appendix by Misha Brin. doi: 10.1007/978-3-0348-9240-7.
      W. Ballmann  and  M. Brin , Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ. Math., 82 (1995) , 169-209. 
      W. Ballmann , M. Brin  and  P. Eberlein , Structure of manifolds of nonpositive curvature. Ⅰ, Ann. of Math. (2), 122 (1985) , 171-203.  doi: 10.2307/1971373.
      W. Ballmann, M. Gromov and V. Schroeder, Manifolds of Nonpositive Curvature, vol. 61 of Progress in Mathematics, Birkhäuser Boston Inc., Boston, MA, 1985. doi: 10.1007/978-1-4684-9159-3.
      V. Bangert  and  V. Schroeder , Existence of flat tori in analytic manifolds of nonpositive curvature, Ann. Sci. École Norm. Sup. (4), 24 (1991) , 605-634.  doi: 10.24033/asens.1638.
      M. Bourdon , Structure conforme au bord et flot géodésique d'un $\rm CAT(-1)$-espace, Enseign. Math. (2), 41 (1995) , 63-102. 
      M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-12494-9.
      D. Burago, Y. Burago and S. Ivanov, A course in Metric Geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/033.
      K. Burns , Hyperbolic behaviour of geodesic flows on manifolds with no focal points, Ergodic Theory Dynam. Systems, 3 (1983) , 1-12.  doi: 10.1017/S0143385700001796.
      K. Burns  and  R. Spatzier , Manifolds of nonpositive curvature and their buildings, Inst. Hautes Etudes Sci. Publ. Math., 65 (1987) , 35-59. 
      P-E. Caprace  and  K. Fujiwara , Rank-one isometries of buildings and quasi-morphisms of Kac-Moody groups, Geom. Funct. Anal., 19 (2010) , 1296-1319.  doi: 10.1007/s00039-009-0042-2.
      M. Coornaert  and  A. Papadopoulos , Une dichotomie de Hopf pour les flots géodésiques associés aux groupes discrets d'isométries des arbres, Trans. Amer. Math. Soc., 343 (1994) , 883-898.  doi: 10.2307/2154747.
      F. Dal'bo , J.-P. Otal  and  M. Peigné , Séries de Poincaré des groupes géométriquement finis, Israel J. Math., 118 (2000) , 109-124.  doi: 10.1007/BF02803518.
      U. Hamenstädt, Rank-one isometries of proper CAT(0)-spaces, Discrete Groups and Geometric Structures, Contemporary Mathematics,, American Mathematical Society, Providence, RI, 501 (2009), 43–59. doi: 10.1090/conm/501/09839.
      E. Hopf, Ergodentheorie, Springer, 1937. doi: 10.1007/978-3-642-86630-2.
      E. Hopf , Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc., 77 (1971) , 863-877.  doi: 10.1090/S0002-9904-1971-12799-4.
      V. A. Kaimanovich , Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, J. Reine Angew. Math., 455 (1994) , 57-103.  doi: 10.1515/crll.1994.455.57.
      G. Knieper , On the asymptotic geometry of nonpositively curved manifolds, Geom. Funct. Anal., 7 (1997) , 755-782.  doi: 10.1007/s000390050025.
      G. Knieper , The uniqueness of the measure of maximal entropy for geodesic flows on rank $1$ manifolds, Ann. of Math. (2), 148 (1998) , 291-314.  doi: 10.2307/120995.
      U. Krengel , Darstellungssätze für Strömungen und Halbströmungen. Ⅰ, Mathematische Annalen, 176 (1968) , 181-190.  doi: 10.1007/BF02052824.
      U. Krengel, Ergodic Theorems, vol. 6 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 1985, With a supplement by Antoine Brunel. doi: 10.1515/9783110844641.
      G. Link , Asymptotic geometry and growth of conjugacy classes of nonpositively curved manifolds, Ann. Global Anal. Geom., 31 (2007) , 37-57.  doi: 10.1007/s10455-006-9016-x.
      G. Link , Asymptotic geometry in products of Hadamard spaces with rank one isometries, Geometry and Topology, 14 (2010) , 1063-1094.  doi: 10.2140/gt.2010.14.1063.
      G. Link , M. Peigné  and  J.-C. Picaud , Sur les surfaces non-compactes de rang un, Enseign. Math. (2), 52 (2006) , 3-36. 
      G. Link and J.-C. Picaud, Ergodic geometry for non-elementary rank one manifolds, Discrete and Continuous Dyn. Syst. A, no. 11, 36 (2016), 6257–6284. doi: 10.3934/dcds.2016072.
      P. J. Nicholls, The Ergodic Theory of Discrete Groups, vol. 143 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1989. doi: 10.1017/CBO9780511600678.
      J.-P. Otal  and  M. Peigné , Principe variationnel et groupes kleiniens, Duke Math. J., 125 (2004) , 15-44.  doi: 10.1215/S0012-7094-04-12512-6.
      S. J. Patterson , The limit set of a Fuchsian group, Acta Math., 136 (1976) , 241-273.  doi: 10.1007/BF02392046.
      M. Peigné, Autour de l'exposant de Poincaré d'un groupe kleinien, Géométrie ergodique, Monogr. Enseign. Math., Enseignement Math., Geneva, 43 (2013), 25–59.
      R. Ricks, Flat strips, Bowen-Margulis measures, and mixing of the geodesic flow for rank one spaces, PhD Thesis, University of Michigan, 2015.
      R. Ricks, Flat strips, Bowen-Margulis measures, and mixing of the geodesic flow for rank one CAT(0) spaces, Ergodic Theory Dynam. Systems, no. 3, 37 (2017), 939–970. doi: 10.1017/etds.2015.78.
      T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N. S. ), 95 (2003), ⅵ+96pp.
      T. Roblin , Un théorème de Fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative, Israel J. Math., 147 (2005) , 333-357.  doi: 10.1007/BF02785371.
      V. Schroeder , Existence of immersed tori in manifolds of nonpositive curvature, J. Reine Angew. Math., 390 (1988) , 32-46.  doi: 10.1515/crll.1988.390.32.
      V. Schroeder , Structure of flat subspaces in low-dimensional manifolds of nonpositive curvature, Manuscripta Math., 64 (1989) , 77-105.  doi: 10.1007/BF01182086.
      V. Schroeder , Codimension one tori in manifolds of nonpositive curvature, Geom. Dedicata, 33 (1990) , 251-263.  doi: 10.1007/BF00181332.
      D. Sullivan , The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., 50 (1979) , 171-202. 
      M. E. Taylor, Measure Theory and Integration, vol. 76 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/gsm/076.
      M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publishing Co., New York, 1975, Reprinting of the 1959 original.
      C. Yue , The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc., 348 (1996) , 4965-5005.  doi: 10.1090/S0002-9947-96-01614-5.
  • 加载中
SHARE

Article Metrics

HTML views(2052) PDF downloads(205) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return