November  2018, 38(11): 5615-5648. doi: 10.3934/dcds.2018246

A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion

1. 

Laboratoire de Mathématique, Analyse Numérique et EDP, University of Paris-Sud, F-91405 Orsay Cedex, France

2. 

CNRS and Laboratoire de Mathématique, Analyse Numérique et EDP, University of Paris-Sud, F-91405 Orsay Cedex, France

3. 

Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Tokyo 153-8914, Japan

* Corresponding author: Danielle Hilhorst

Received  December 2017 Revised  June 2018 Published  August 2018

Fund Project: The first author is supported by a public grant as part of the Investissement d'avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

In this paper, we prove a well posedness result for an initial boundary value problem for a stochastic nonlocal reaction-diffusion equation with nonlinear diffusion together with a nul-flux boundary condition in an open bounded domain of $\mathbb{R}^n$ with a smooth boundary. We suppose that the additive noise is induced by a Q-Brownian motion.

Citation: Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246
References:
[1]

D. C. AntonopoulouP. W. BatesD. Blömker and G. D. Karali, Motion of a droplet for the stochastic mass-conserving allen-cahn equation, SIAM Journal on Mathematical Analysis, 48 (2016), 670-708.  doi: 10.1137/151005105.  Google Scholar

[2]

C. BauzetG. Vallet and P. Wittbold, The cauchy problem for conservation laws with a multiplicative stochastic perturbation, Journal of Hyperbolic Differential Equations, 9 (2012), 661-709.  doi: 10.1142/S0219891612500221.  Google Scholar

[3]

C. Bennett and R. C Sharpley, Interpolation of Operators, volume 129. Academic press, 1988.  Google Scholar

[4]

S. BoussaïdD. Hilhorst and T. N. Nguyen, Convergence to steady states for solutions of a reaction-diffusion equation, Evol. Equ. Control Theory, 4 (2015), 39-59.  doi: 10.3934/eect.2015.4.39.  Google Scholar

[5]

W. Cheney, Analysis for Applied Mathematics, Springer, 2001. doi: 10.1007/978-1-4757-3559-8.  Google Scholar

[6]

G. Da Prato and A. Debussche, Stochastic cahn-hilliard equation, Nonlinear Analysis: Theory, Methods & Applications, 26 (1996), 241-263.  doi: 10.1016/0362-546X(94)00277-O.  Google Scholar

[7]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge university press, 2014. doi: 10.1017/CBO9781107295513.  Google Scholar

[8]

T. Funaki and S. Yokoyama, Sharp interface limit for stochastically perturbed mass conserving allen-cahn equation, arXiv preprint, arXiv: 1610.01263, 2016. Google Scholar

[9]

L. Gawarecki and V. Mandrekar, Stochastic Differential Equations in Infinite Dimensions, Springer, 2011. doi: 10.1007/978-3-642-16194-0.  Google Scholar

[10]

B. Gess, Strong solutions for stochastic partial differential equations of gradient type, Journal of Functional Analysis, 263 (2012), 2355-2383.  doi: 10.1016/j.jfa.2012.07.001.  Google Scholar

[11]

I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, volume 113. Springer Science & Business Media, 2013. doi: 10.1007/978-3-642-31898-6.  Google Scholar

[12]

N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations. stochastic differential equations: Theory and applications, Journal of Soviet Mathematics, 14 (1981), 1233-1277.   Google Scholar

[13]

H. H. Kuo, Introduction to Stochastic Integration, Springer Science & Business Media, 2006.  Google Scholar

[14]

M. Marion, Attractors for reaction-diffusion equations: Existence and estimate of their dimension, Applicable Analysis, 25 (1987), 101-147.  doi: 10.1080/00036818708839678.  Google Scholar

[15]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, volume 1905. Springer, 2007.  Google Scholar

[16]

M. Reiß, Stochastic Differential Equations, Lecture Notes, Humboldt University Berlin, 2003. Google Scholar

[17]

J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA Journal of Applied Mathematics, 48 (1992), 249-264.  doi: 10.1093/imamat/48.3.249.  Google Scholar

[18]

R. Temam, Navier-stokes Equations, volume 2. North-Holland Amsterdam, revised edition 1979.  Google Scholar

show all references

References:
[1]

D. C. AntonopoulouP. W. BatesD. Blömker and G. D. Karali, Motion of a droplet for the stochastic mass-conserving allen-cahn equation, SIAM Journal on Mathematical Analysis, 48 (2016), 670-708.  doi: 10.1137/151005105.  Google Scholar

[2]

C. BauzetG. Vallet and P. Wittbold, The cauchy problem for conservation laws with a multiplicative stochastic perturbation, Journal of Hyperbolic Differential Equations, 9 (2012), 661-709.  doi: 10.1142/S0219891612500221.  Google Scholar

[3]

C. Bennett and R. C Sharpley, Interpolation of Operators, volume 129. Academic press, 1988.  Google Scholar

[4]

S. BoussaïdD. Hilhorst and T. N. Nguyen, Convergence to steady states for solutions of a reaction-diffusion equation, Evol. Equ. Control Theory, 4 (2015), 39-59.  doi: 10.3934/eect.2015.4.39.  Google Scholar

[5]

W. Cheney, Analysis for Applied Mathematics, Springer, 2001. doi: 10.1007/978-1-4757-3559-8.  Google Scholar

[6]

G. Da Prato and A. Debussche, Stochastic cahn-hilliard equation, Nonlinear Analysis: Theory, Methods & Applications, 26 (1996), 241-263.  doi: 10.1016/0362-546X(94)00277-O.  Google Scholar

[7]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge university press, 2014. doi: 10.1017/CBO9781107295513.  Google Scholar

[8]

T. Funaki and S. Yokoyama, Sharp interface limit for stochastically perturbed mass conserving allen-cahn equation, arXiv preprint, arXiv: 1610.01263, 2016. Google Scholar

[9]

L. Gawarecki and V. Mandrekar, Stochastic Differential Equations in Infinite Dimensions, Springer, 2011. doi: 10.1007/978-3-642-16194-0.  Google Scholar

[10]

B. Gess, Strong solutions for stochastic partial differential equations of gradient type, Journal of Functional Analysis, 263 (2012), 2355-2383.  doi: 10.1016/j.jfa.2012.07.001.  Google Scholar

[11]

I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, volume 113. Springer Science & Business Media, 2013. doi: 10.1007/978-3-642-31898-6.  Google Scholar

[12]

N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations. stochastic differential equations: Theory and applications, Journal of Soviet Mathematics, 14 (1981), 1233-1277.   Google Scholar

[13]

H. H. Kuo, Introduction to Stochastic Integration, Springer Science & Business Media, 2006.  Google Scholar

[14]

M. Marion, Attractors for reaction-diffusion equations: Existence and estimate of their dimension, Applicable Analysis, 25 (1987), 101-147.  doi: 10.1080/00036818708839678.  Google Scholar

[15]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, volume 1905. Springer, 2007.  Google Scholar

[16]

M. Reiß, Stochastic Differential Equations, Lecture Notes, Humboldt University Berlin, 2003. Google Scholar

[17]

J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA Journal of Applied Mathematics, 48 (1992), 249-264.  doi: 10.1093/imamat/48.3.249.  Google Scholar

[18]

R. Temam, Navier-stokes Equations, volume 2. North-Holland Amsterdam, revised edition 1979.  Google Scholar

[1]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[2]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[3]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[4]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[5]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[6]

Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020087

[7]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[8]

Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4907-4926. doi: 10.3934/dcdsb.2020319

[10]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[11]

Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085

[12]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[13]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[14]

José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure & Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85

[15]

Jorge Ferreira, Hermenegildo Borges de Oliveira. Parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2431-2453. doi: 10.3934/dcds.2017105

[16]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4867-4885. doi: 10.3934/dcdsb.2020316

[17]

Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 81-98. doi: 10.3934/dcdsb.2019173

[18]

Klemens Fellner, Evangelos Latos, Takashi Suzuki. Global classical solutions for mass-conserving, (super)-quadratic reaction-diffusion systems in three and higher space dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3441-3462. doi: 10.3934/dcdsb.2016106

[19]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[20]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (201)
  • HTML views (109)
  • Cited by (3)

Other articles
by authors

[Back to Top]