In this paper, we prove a well posedness result for an initial boundary value problem for a stochastic nonlocal reaction-diffusion equation with nonlinear diffusion together with a nul-flux boundary condition in an open bounded domain of $\mathbb{R}^n$ with a smooth boundary. We suppose that the additive noise is induced by a Q-Brownian motion.
Citation: |
D. C. Antonopoulou
, P. W. Bates
, D. Blömker
and G. D. Karali
, Motion of a droplet for the stochastic mass-conserving allen-cahn equation, SIAM Journal on Mathematical Analysis, 48 (2016)
, 670-708.
doi: 10.1137/151005105.![]() ![]() ![]() |
|
C. Bauzet
, G. Vallet
and P. Wittbold
, The cauchy problem for conservation laws with a multiplicative stochastic perturbation, Journal of Hyperbolic Differential Equations, 9 (2012)
, 661-709.
doi: 10.1142/S0219891612500221.![]() ![]() ![]() |
|
C. Bennett and R. C Sharpley, Interpolation of Operators, volume 129. Academic press, 1988.
![]() ![]() |
|
S. Boussaïd
, D. Hilhorst
and T. N. Nguyen
, Convergence to steady states for solutions of a reaction-diffusion equation, Evol. Equ. Control Theory, 4 (2015)
, 39-59.
doi: 10.3934/eect.2015.4.39.![]() ![]() ![]() |
|
W. Cheney, Analysis for Applied Mathematics, Springer, 2001.
doi: 10.1007/978-1-4757-3559-8.![]() ![]() ![]() |
|
G. Da Prato
and A. Debussche
, Stochastic cahn-hilliard equation, Nonlinear Analysis: Theory, Methods & Applications, 26 (1996)
, 241-263.
doi: 10.1016/0362-546X(94)00277-O.![]() ![]() ![]() |
|
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge university press, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() ![]() |
|
T. Funaki and S. Yokoyama, Sharp interface limit for stochastically perturbed mass conserving allen-cahn equation, arXiv preprint, arXiv: 1610.01263, 2016.
![]() |
|
L. Gawarecki and V. Mandrekar, Stochastic Differential Equations in Infinite Dimensions, Springer, 2011.
doi: 10.1007/978-3-642-16194-0.![]() ![]() ![]() |
|
B. Gess
, Strong solutions for stochastic partial differential equations of gradient type, Journal of Functional Analysis, 263 (2012)
, 2355-2383.
doi: 10.1016/j.jfa.2012.07.001.![]() ![]() ![]() |
|
I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, volume 113. Springer Science & Business Media, 2013.
doi: 10.1007/978-3-642-31898-6.![]() ![]() ![]() |
|
N. V. Krylov
and B. L. Rozovskii
, Stochastic evolution equations. stochastic differential equations: Theory and applications, Journal of Soviet Mathematics, 14 (1981)
, 1233-1277.
![]() |
|
H. H. Kuo, Introduction to Stochastic Integration, Springer Science & Business Media, 2006.
![]() ![]() |
|
M. Marion
, Attractors for reaction-diffusion equations: Existence and estimate of their dimension, Applicable Analysis, 25 (1987)
, 101-147.
doi: 10.1080/00036818708839678.![]() ![]() ![]() |
|
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, volume 1905. Springer, 2007.
![]() ![]() |
|
M. Reiß, Stochastic Differential Equations, Lecture Notes, Humboldt University Berlin, 2003.
![]() |
|
J. Rubinstein
and P. Sternberg
, Nonlocal reaction-diffusion equations and nucleation, IMA Journal of Applied Mathematics, 48 (1992)
, 249-264.
doi: 10.1093/imamat/48.3.249.![]() ![]() ![]() |
|
R. Temam, Navier-stokes Equations, volume 2. North-Holland Amsterdam, revised edition 1979.
![]() ![]() |