Advanced Search
Article Contents
Article Contents

Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations

  • * Corresponding author: Roland Schnaubelt

    * Corresponding author: Roland Schnaubelt

The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we investigate an alternating direction implicit (ADI) time integration scheme for the linear Maxwell equations with currents, charges and conductivity. We show its stability and efficiency. The main results establish that the scheme converges in a space similar to $H^{-1}$ with order two to the solution of the Maxwell system. Moreover, the divergence conditions in the system are preserved in $H^{-1}$ with order one.

    Mathematics Subject Classification: Primary: 65M12; Secondary: 35Q61, 47D06, 65J10.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition, Elsevier, Amsterdam, 2003.
    [2] H. Amann, Linear and Quasilinear Parabolic Problems. Volume Ⅰ: Abstract Linear Theory Birkhäuser, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.
    [3] C. AmroucheC. BernardiM. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21 (1998), 823-864.  doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B.
    [4] W. ChenX. Li and D. Liang, Energy-conserved splitting FDTD methods for Maxwell's equations, Numer. Math., 108 (2008), 445-485.  doi: 10.1007/s00211-007-0123-9.
    [5] W. ChenX. Li and D. Liang, Energy-conserved splitting finite-difference time-domain methods for Maxwell's equations in three dimensions, SIAM J. Numer. Anal., 48 (2010), 1530-1554.  doi: 10.1137/090765857.
    [6] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 3: Spectral Theory and Applications, Springer, Berlin, 1990.
    [7] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 5: Evolution Problems I, Springer, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.
    [8] J. Eilinghoff, Error estimates of splitting methods for wave type equations, Ph. D. thesis, Karlsruhe, 2017, see https://publikationen.bibliothek.kit.edu/1000075070.
    [9] J. Eilinghoff and R. Schnaubelt, Error estimates in L2 of an ADI splitting scheme for the inhomogeneous Maxwell, preprint, see http://www.math.kit.edu/iana3/$\sim$schnaubelt/media/adi-strong.pdf.
    [10] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.
    [11] L. GaoB. Zhang and D. Liang, The splitting finite-difference time-domain methods for Maxwell's equations in two dimensions, J. Comput. Appl. Math., 205 (2007), 207-230.  doi: 10.1016/j.cam.2006.04.051.
    [12] E. Hansen and A. Ostermann, Dimension splitting for evolution equations, Numer. Math., 108 (2008), 557-570.  doi: 10.1007/s00211-007-0129-3.
    [13] M. HochbruckT. Jahnke and R. Schnaubelt, Convergence of an ADI splitting for Maxwell's equations, Numer. Math., 129 (2015), 535-561.  doi: 10.1007/s00211-014-0642-0.
    [14] M. Hochbruck and A. Sturm, Error analysis of a second-order locally implicit method for linear Maxwell's equations, SIAM J. Numer. Anal., 54 (2016), 3167-3191.  doi: 10.1137/15M1038037.
    [15] M. Hochbruck and A. Sturm, Upwind discontinuous Galerkin space discretization and locally implicit time integration for linear Maxwell's equations preprint 2017/12 of CRC 1172, see http://www.waves.kit.edu/downloads/CRC1173_Preprint_2017-12.pdf. doi: 10.1090/mcom/3365.
    [16] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995.
    [17] P. C. Kunstmann and L. Weis, Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H-functional calculus, In Functional Analytic Methods for Evolution Equations (eds. M. Iannelli, R. Nagel and S. Piazzera), Springer-Verlag, 1855 (2004), 65-311. doi: 10.1007/978-3-540-44653-8_2.
    [18] J. Lee and B. Fornberg, A split step approach for the 3-D Maxwell's equations, J. Comput. Appl. Math., 158 (2003), 485-505.  doi: 10.1016/S0377-0427(03)00484-9.
    [19] A. Lunardi, Interpolation Theory, Edizione della Normale, Pisa, 2009.
    [20] T. Namiki, 3-D ADI-FDTD method-unconditionally stable time-domain algorithm for solving full vector Maxwell's equations, IEEE Trans. Microwave Theory Tech., 48 (2000), 1743-1748. 
    [21] J. Nečas, Direct Methods in the Theory of Elliptic Equations Springer-Verlag, Heidelberg, 2012.
    [22] A. Ostermann and K. Schratz, Error analysis of splitting methods for inhomogeneous evolution equations, Appl. Numer. Math., 62 (2012), 1436-1446.  doi: 10.1016/j.apnum.2012.06.002.
    [23] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
    [24] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Second edition. With 1 CD-ROM (Windows). Artech House, Inc., Boston, MA, 2000.
    [25] K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propagation, 14 (1966), 302-307. 
    [26] F. ZhengZ. Chen and J. Zhang, Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method, IEEE Trans. Microwave Theory Tech., 48 (2000), 1550-1558. 
  • 加载中

Article Metrics

HTML views(601) PDF downloads(352) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint