November  2018, 38(11): 5735-5763. doi: 10.3934/dcds.2018250

L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs

Norwegian University of Science and Technology, NO-7491, Trondheim, Norway

* Corresponding author: Espen R. Jakobsen

Received  January 2018 Revised  June 2018 Published  August 2018

Fund Project: E. R. Jakobsen is supported by the Toppforsk (research excellence) project Waves and Nonlinear Phenomena (WaNP), grant no. 250070 from the Research Council of Norway

We prove a new generation result in $L^1$ for a large class of non-local operators with non-degenerate local terms. This class contains the operators appearing in Fokker-Planck or Kolmogorov forward equations associated with Lévy driven SDEs, i.e. the adjoint operators of the infinitesimal generators of these SDEs. As a byproduct, we also obtain a new elliptic regularity result of independent interest. The main novelty in this paper is that we can consider very general Lévy operators, including state-space depending coefficients with linear growth and general Lévy measures which can be singular and have fat tails.

Citation: Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250
References:
[1]

H. Abels, Pseudodifferential and Singular Integral Operators: An Introduction with Applications, De Gruyter Textbook, De Gruyter, 2012. Google Scholar

[2]

N. AlibaudS. Cifani and E. R. Jakobsen, Continuous dependence estimates for nonlinear fractional convection-diffusion equations, SIAM Journal on Mathematical Analysis, 44 (2012), 603-632. doi: 10.1137/110834342. Google Scholar

[3]

D. Applebaum, Lévy Processes And Stochastic Calculus, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2004. doi: 10.1017/CBO9780511755323. Google Scholar

[4]

D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 607-694. Google Scholar

[5]

V. Bally and L. Caramellino, On the distances between probability density functions, Electron. J. Probab., 19 (2014), 1-33. doi: 10.1214/EJP.v19-3175. Google Scholar

[6]

O. E. Barndorff-Nielsen, Normal inverse gaussian distributions and stochastic volatility modelling, Scand. J. Stat., 24 (1997), 1-13. doi: 10.1111/1467-9469.t01-1-00045. Google Scholar

[7]

R. F. Bass and D. A. Levin, Transition probabilities for symmetric jump processes, Trans. Amer. Math. Soc., 354 (2002), 2933-2953. doi: 10.1090/S0002-9947-02-02998-7. Google Scholar

[8]

F. E. BenthK. H. Karlsen and K. Reikvam, Optimal portfolio management rules in a non-Gaussian market with durability and intertemporal substitution, Finance and Stochastics, 5 (2001), 447-467. doi: 10.1007/s007800000032. Google Scholar

[9]

S. V. Bodnarchuk and A. M. Kulik, Conditions for the existence and smoothness of the distribution density for the Ornstein-Uhlenbeck process with Lévy noise, Teor. Imovir. Mat. Statyst., (2008), 21-35. Google Scholar

[10]

V. I. Bogachev, N. V. Krylov, M. Röckner and S. V. Shaposhnikov, Fokker-Planck-Kolmogorov Equations, vol. 207, American Mathematical Society, Providence, RI, 2015. doi: 10.1090/surv/207. Google Scholar

[11]

K. Bogdan and T. Jakubowski, Estimates of heat kernel of fractional laplacian perturbed by gradient opera- tors, Comm. Math. Phys., 271 (2007), 179-198. doi: 10.1007/s00220-006-0178-y. Google Scholar

[12]

J.-M. Bony, Principe du maximum dans les espaces de Sobolev, Comptes Rendus Acad. Sci. Paris, Série A, 265 (1967), 333-336 (French). Google Scholar

[13]

B. P. Brooks, The coefficients of the characteristic polynomial in terms of the eigenvalues and the elements of an n × n matrix, Appl. Math. Lett., 19 (2006), 511-515. doi: 10.1016/j.aml.2005.07.007. Google Scholar

[14]

Y. A. Butko, M. Grothaus and O. G. Smolyanov, Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions, J. Math. Phys., 57 (2016), 023508, 22pp. doi: 10.1063/1.4940697. Google Scholar

[15]

J. Cai and H. Yang, On the decomposition of the absolute ruin probability in a perturbed compound poisson surplus process with debit interest, Annals of Operations Research, 212 (2014), 61-77. doi: 10.1007/s10479-011-1032-y. Google Scholar

[16]

T. Cass, Smooth densities for solutions to stochastic differential equations with jumps, Stochastic Processes and their Applications, 119 (2009), 1416-1435. doi: 10.1016/j.spa.2008.07.005. Google Scholar

[17]

L. Chen, The Numerical Path Integration Method for Stochastic Differential Equations, Ph. D. thesis, NTNU Norwegian University of Science and Technology, 2016.Google Scholar

[18]

L. ChenE. R. Jakobsen and A. Naess, On numerical density approximations of solutions of SDEs with unbounded coefficients, Adv. Comput. Math., 44 (2018), 693-721. doi: 10.1007/s10444-017-9558-4. Google Scholar

[19]

Z.-Q. ChenE. HuL Xie and X. Zhang, Heat kernels for non-symmetric diffusion operators with jumps, J. Differential Equations, 263 (2017), 6576-6634. doi: 10.1016/j.jde.2017.07.023. Google Scholar

[20]

Z.-Q. Chen and T. Kumagai, A priori hölder estimate, parabolic harnack principle and heat kernel estimates for diffusions with jumps., Rev. Mat. Iberoam., 26 (2010), 551-589. doi: 10.4171/RMI/609. Google Scholar

[21]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC Financial Mathematics Series, CRC Press, 2004. Google Scholar

[22]

N. Dunford, J. T. Schwartz, W. G. Bade and R. G. Bartle, Linear Operators, Part Ⅰ: General Theory, Pure and Applied Mathematics. vol. 7, etc, New York; Groningen printed, 1958. Google Scholar

[23]

K. J. Engel and R. Nagel, et al., One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000. Google Scholar

[24]

L. C. Evans, Partial Differential Equations, Graduate studies in mathematics, American Mathematical Society, 2010. doi: 10.1090/gsm/019. Google Scholar

[25]

S. Fornaro and L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in Lp- and Cb-spaces, Discrete and Continuous Dynamical Systems, 18 (2007), 747-772. doi: 10.3934/dcds.2007.18.747. Google Scholar

[26]

M. G. Garroni and J. L. Menaldi, Second Order Elliptic Integro-Differential Problems, Chapman & Hall/CRC Research Notes in Mathematics Series, CRC Press, 2002. doi: 10.1201/9781420035797. Google Scholar

[27]

Ĭ. Ī. Gīhman and A. V. Skorohod, Stochastic Differential Equations, Springer-Verlag, New York-Heidelberg, 1972, Translated from the Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72. Google Scholar

[28]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001 Google Scholar

[29]

F. Gimbert and P.-L. Lions, Existence and regularity results for solutions of second-order elliptic integro-differential operators, Ricerche di Matematica, 33 (1984), 315-358. Google Scholar

[30]

S. Hiraba, Existence and smoothness of transition density for jump-type Markov processes: Applications of Malliavin calculus, Kodai Math. J., 15 (1992), 29-49. doi: 10.2996/kmj/1138039525. Google Scholar

[31]

V. Kolokoltsov, Symmetric stable laws and stable-like jump-diffusions, Proc. London Math. Soc., 80 (2000), 725-768. doi: 10.1112/S0024611500012314. Google Scholar

[32]

T. Komatsu and A. Takeuchi, On the smoothness of PDF of solutions to SDE of jump type, International Journal of Differential Equations and Applications, 2 (2001), 141-197. Google Scholar

[33]

A. Kyprianou, W. Schoutens and P. Wilmott, Exotic Option Pricing and Advanced Lévy Models, Wiley, 2005. Google Scholar

[34]

P.-L. Lions, A remark on Bony maximum principle, Proc. Amer. Math. Soc., 88 (1983), 503-508. doi: 10.1090/S0002-9939-1983-0699422-3. Google Scholar

[35]

T. Mikosch, Non-life Insurance Mathematics: An Introduction with the Poisson Process, Universitext, Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-540-88233-6. Google Scholar

[36]

B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Universitext, Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-69826-5. Google Scholar

[37]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[38]

G. B. Price, Bounds for determinants with dominant principal diagonal, Proceedings of the American Mathematical Society, 2 (1951), 497-502. doi: 10.1090/S0002-9939-1951-0041093-2. Google Scholar

[39]

P. Protter, Stochastic Integration and Differential Equations, Stochastic Modelling and Applied Probability, Springer Berlin Heidelberg, 2005. doi: 10.1007/978-3-662-10061-5. Google Scholar

[40]

M. Schechter, Principles of Functional Analysis, Graduate studies in mathematics, American Mathematical Society, 2002. Google Scholar

[41]

W. Schoutens, Lévy Processes in Finance: Pricing Financial Derivatives, Wiley Series in Probability and Statistics, Wiley, 2003. doi: 10.1002/0470870230. Google Scholar

[42]

J. Wang, Sub-Markovian C0-semigroups generated by fractional laplacian with gradient perturbation, Integral Equations and Operator Theory, 76 (2013), 151-161. doi: 10.1007/s00020-013-2055-3. Google Scholar

[43]

R. L. Wheeden and A. Zygmund, Measure and Integral: An Introduction to Real Analysis, Second edition. Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, 2015. Google Scholar

[44]

W. Zhang and J. Bao, Regularity of very weak solutions for elliptic equation of divergence form, Journal of Functional Analysis, 262 (2012), 1867-1878. doi: 10.1016/j.jfa.2011.11.027. Google Scholar

[45]

________, Regularity of very weak solutions for nonhomogeneous elliptic equation, Communications in Contemporary Mathematics, 15 (2013), 1350012, 19pp. doi: 10.1142/S0219199713500120. Google Scholar

[46]

X. Zhang, Densities for SDEs driven by degenerate α-stable processes, Annals of Probability, 42 (2014), 1885-1910. doi: 10.1214/13-AOP900. Google Scholar

show all references

References:
[1]

H. Abels, Pseudodifferential and Singular Integral Operators: An Introduction with Applications, De Gruyter Textbook, De Gruyter, 2012. Google Scholar

[2]

N. AlibaudS. Cifani and E. R. Jakobsen, Continuous dependence estimates for nonlinear fractional convection-diffusion equations, SIAM Journal on Mathematical Analysis, 44 (2012), 603-632. doi: 10.1137/110834342. Google Scholar

[3]

D. Applebaum, Lévy Processes And Stochastic Calculus, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2004. doi: 10.1017/CBO9780511755323. Google Scholar

[4]

D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 607-694. Google Scholar

[5]

V. Bally and L. Caramellino, On the distances between probability density functions, Electron. J. Probab., 19 (2014), 1-33. doi: 10.1214/EJP.v19-3175. Google Scholar

[6]

O. E. Barndorff-Nielsen, Normal inverse gaussian distributions and stochastic volatility modelling, Scand. J. Stat., 24 (1997), 1-13. doi: 10.1111/1467-9469.t01-1-00045. Google Scholar

[7]

R. F. Bass and D. A. Levin, Transition probabilities for symmetric jump processes, Trans. Amer. Math. Soc., 354 (2002), 2933-2953. doi: 10.1090/S0002-9947-02-02998-7. Google Scholar

[8]

F. E. BenthK. H. Karlsen and K. Reikvam, Optimal portfolio management rules in a non-Gaussian market with durability and intertemporal substitution, Finance and Stochastics, 5 (2001), 447-467. doi: 10.1007/s007800000032. Google Scholar

[9]

S. V. Bodnarchuk and A. M. Kulik, Conditions for the existence and smoothness of the distribution density for the Ornstein-Uhlenbeck process with Lévy noise, Teor. Imovir. Mat. Statyst., (2008), 21-35. Google Scholar

[10]

V. I. Bogachev, N. V. Krylov, M. Röckner and S. V. Shaposhnikov, Fokker-Planck-Kolmogorov Equations, vol. 207, American Mathematical Society, Providence, RI, 2015. doi: 10.1090/surv/207. Google Scholar

[11]

K. Bogdan and T. Jakubowski, Estimates of heat kernel of fractional laplacian perturbed by gradient opera- tors, Comm. Math. Phys., 271 (2007), 179-198. doi: 10.1007/s00220-006-0178-y. Google Scholar

[12]

J.-M. Bony, Principe du maximum dans les espaces de Sobolev, Comptes Rendus Acad. Sci. Paris, Série A, 265 (1967), 333-336 (French). Google Scholar

[13]

B. P. Brooks, The coefficients of the characteristic polynomial in terms of the eigenvalues and the elements of an n × n matrix, Appl. Math. Lett., 19 (2006), 511-515. doi: 10.1016/j.aml.2005.07.007. Google Scholar

[14]

Y. A. Butko, M. Grothaus and O. G. Smolyanov, Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions, J. Math. Phys., 57 (2016), 023508, 22pp. doi: 10.1063/1.4940697. Google Scholar

[15]

J. Cai and H. Yang, On the decomposition of the absolute ruin probability in a perturbed compound poisson surplus process with debit interest, Annals of Operations Research, 212 (2014), 61-77. doi: 10.1007/s10479-011-1032-y. Google Scholar

[16]

T. Cass, Smooth densities for solutions to stochastic differential equations with jumps, Stochastic Processes and their Applications, 119 (2009), 1416-1435. doi: 10.1016/j.spa.2008.07.005. Google Scholar

[17]

L. Chen, The Numerical Path Integration Method for Stochastic Differential Equations, Ph. D. thesis, NTNU Norwegian University of Science and Technology, 2016.Google Scholar

[18]

L. ChenE. R. Jakobsen and A. Naess, On numerical density approximations of solutions of SDEs with unbounded coefficients, Adv. Comput. Math., 44 (2018), 693-721. doi: 10.1007/s10444-017-9558-4. Google Scholar

[19]

Z.-Q. ChenE. HuL Xie and X. Zhang, Heat kernels for non-symmetric diffusion operators with jumps, J. Differential Equations, 263 (2017), 6576-6634. doi: 10.1016/j.jde.2017.07.023. Google Scholar

[20]

Z.-Q. Chen and T. Kumagai, A priori hölder estimate, parabolic harnack principle and heat kernel estimates for diffusions with jumps., Rev. Mat. Iberoam., 26 (2010), 551-589. doi: 10.4171/RMI/609. Google Scholar

[21]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC Financial Mathematics Series, CRC Press, 2004. Google Scholar

[22]

N. Dunford, J. T. Schwartz, W. G. Bade and R. G. Bartle, Linear Operators, Part Ⅰ: General Theory, Pure and Applied Mathematics. vol. 7, etc, New York; Groningen printed, 1958. Google Scholar

[23]

K. J. Engel and R. Nagel, et al., One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000. Google Scholar

[24]

L. C. Evans, Partial Differential Equations, Graduate studies in mathematics, American Mathematical Society, 2010. doi: 10.1090/gsm/019. Google Scholar

[25]

S. Fornaro and L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in Lp- and Cb-spaces, Discrete and Continuous Dynamical Systems, 18 (2007), 747-772. doi: 10.3934/dcds.2007.18.747. Google Scholar

[26]

M. G. Garroni and J. L. Menaldi, Second Order Elliptic Integro-Differential Problems, Chapman & Hall/CRC Research Notes in Mathematics Series, CRC Press, 2002. doi: 10.1201/9781420035797. Google Scholar

[27]

Ĭ. Ī. Gīhman and A. V. Skorohod, Stochastic Differential Equations, Springer-Verlag, New York-Heidelberg, 1972, Translated from the Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72. Google Scholar

[28]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001 Google Scholar

[29]

F. Gimbert and P.-L. Lions, Existence and regularity results for solutions of second-order elliptic integro-differential operators, Ricerche di Matematica, 33 (1984), 315-358. Google Scholar

[30]

S. Hiraba, Existence and smoothness of transition density for jump-type Markov processes: Applications of Malliavin calculus, Kodai Math. J., 15 (1992), 29-49. doi: 10.2996/kmj/1138039525. Google Scholar

[31]

V. Kolokoltsov, Symmetric stable laws and stable-like jump-diffusions, Proc. London Math. Soc., 80 (2000), 725-768. doi: 10.1112/S0024611500012314. Google Scholar

[32]

T. Komatsu and A. Takeuchi, On the smoothness of PDF of solutions to SDE of jump type, International Journal of Differential Equations and Applications, 2 (2001), 141-197. Google Scholar

[33]

A. Kyprianou, W. Schoutens and P. Wilmott, Exotic Option Pricing and Advanced Lévy Models, Wiley, 2005. Google Scholar

[34]

P.-L. Lions, A remark on Bony maximum principle, Proc. Amer. Math. Soc., 88 (1983), 503-508. doi: 10.1090/S0002-9939-1983-0699422-3. Google Scholar

[35]

T. Mikosch, Non-life Insurance Mathematics: An Introduction with the Poisson Process, Universitext, Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-540-88233-6. Google Scholar

[36]

B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Universitext, Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-69826-5. Google Scholar

[37]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[38]

G. B. Price, Bounds for determinants with dominant principal diagonal, Proceedings of the American Mathematical Society, 2 (1951), 497-502. doi: 10.1090/S0002-9939-1951-0041093-2. Google Scholar

[39]

P. Protter, Stochastic Integration and Differential Equations, Stochastic Modelling and Applied Probability, Springer Berlin Heidelberg, 2005. doi: 10.1007/978-3-662-10061-5. Google Scholar

[40]

M. Schechter, Principles of Functional Analysis, Graduate studies in mathematics, American Mathematical Society, 2002. Google Scholar

[41]

W. Schoutens, Lévy Processes in Finance: Pricing Financial Derivatives, Wiley Series in Probability and Statistics, Wiley, 2003. doi: 10.1002/0470870230. Google Scholar

[42]

J. Wang, Sub-Markovian C0-semigroups generated by fractional laplacian with gradient perturbation, Integral Equations and Operator Theory, 76 (2013), 151-161. doi: 10.1007/s00020-013-2055-3. Google Scholar

[43]

R. L. Wheeden and A. Zygmund, Measure and Integral: An Introduction to Real Analysis, Second edition. Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, 2015. Google Scholar

[44]

W. Zhang and J. Bao, Regularity of very weak solutions for elliptic equation of divergence form, Journal of Functional Analysis, 262 (2012), 1867-1878. doi: 10.1016/j.jfa.2011.11.027. Google Scholar

[45]

________, Regularity of very weak solutions for nonhomogeneous elliptic equation, Communications in Contemporary Mathematics, 15 (2013), 1350012, 19pp. doi: 10.1142/S0219199713500120. Google Scholar

[46]

X. Zhang, Densities for SDEs driven by degenerate α-stable processes, Annals of Probability, 42 (2014), 1885-1910. doi: 10.1214/13-AOP900. Google Scholar

[1]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[2]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[3]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[4]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[5]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[6]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[7]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[8]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[9]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[10]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[11]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[12]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[13]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[14]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[15]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[16]

Antoine Conze, Nicolas Lantos, Olivier Pironneau. The forward Kolmogorov equation for two dimensional options. Communications on Pure & Applied Analysis, 2009, 8 (1) : 195-208. doi: 10.3934/cpaa.2009.8.195

[17]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[18]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[19]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[20]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (41)
  • HTML views (62)
  • Cited by (0)

Other articles
by authors

[Back to Top]