Given a nonlinear control system depending on two controls $u$ and $v$, with dynamics affine in the (unbounded) derivative of $u$ and a closed target set $\mathcal{S}$ depending both on the state and on the control $u$, we study the minimum time problem with a bound on the total variation of $u$ and $u$ constrained in a closed, convex set $U$, possibly with empty interior. We revisit several concepts of generalized control and solution considered in the literature and show that they all lead to the same minimum time function $T$. Then we obtain sufficient conditions for the existence of an optimal generalized trajectory-control pair and study the possibility of Lavrentiev-type gap between the minimum time in the spaces of regular (that is, absolutely continuous) and generalized controls. Finally, under a convexity assumption on the dynamics, we characterize $T$ as the unique lower semicontinuous solution of a regular HJ equation with degenerate state constraints.
Citation: |
S. Aronna
and F. Rampazzo
, $L^1$ limit solutions for control systems, J. Differential Equations, 258 (2015)
, 954-979.
doi: 10.1016/j.jde.2014.10.013.![]() ![]() ![]() |
|
M.S. Aronna
, M. Motta
and F. Rampazzo
, Infimum gaps for limit solutions, Set-Valued Var. Anal., 23 (2015)
, 3-22.
doi: 10.1007/s11228-014-0296-1.![]() ![]() ![]() |
|
A. Arutyunov
, D. Karamzin
and F. L. Pereira
, On a generalization of the impulsive control concept: Controlling system jumps, Discrete Contin. Dyn. Syst., 29 (2011)
, 403-415.
doi: 10.3934/dcds.2011.29.403.![]() ![]() |
|
J. P. Aubin, and H. Frankowska,
Set-valued Analysis, Reprint of the 1990 edition. Modern Birkhuser Classics. Birkhuser Boston, Inc., Boston, MA, 2009.
doi: 10.1007/978-0-8176-4848-0.![]() ![]() ![]() |
|
D. Azimov
and R. Bishop
, New trends in astrodynamics and applications: Optimal trajectories for space guidance, Ann. New York Acad. Sci., 1065 (2005)
, 189-209.
doi: 10.1196/annals.1370.002.![]() ![]() |
|
A. Bressan and B. Piccoli,
Introduction to the Mathematical Theory of Control, AIMS Series on Applied Mathematics, 2. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007.
![]() ![]() |
|
A. Bressan
and F. Rampazzo
, On differential systems with vector-valued impulsive controls, Boll. Un. Mat. Ital. B, 2 (1988)
, 641-656.
![]() ![]() |
|
P. Bousquet
, C. Mariconda
and G. Treu
, On the Lavrentiev phenomenon for multiple integral scalar variational problems, J. Funct. Anal., 266 (2014)
, 5921-5954.
doi: 10.1016/j.jfa.2013.12.020.![]() ![]() |
|
P. Cannarsa and C. Sinestrari,
Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, 58. Birkhuser Boston, Inc., Boston, MA, 2004.
![]() ![]() |
|
A. Catllá
, D. Schaeffer
, T. Witelski
, E. Monson
and A. Lin
, On spiking models for synaptic activity and impulsive differential equations, SIAM Rev., 50 (2008)
, 553-569.
doi: 10.1137/060667980.![]() ![]() ![]() |
|
F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski,
Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics vol. 178, Springer-Verlag, New York, 1998.
![]() ![]() |
|
V. A. Dykhta, Impulse-trajectory extension of degenerated optimal control problems. The
Lyapunov functions method and applications, IMACS Ann. Comput. Appl. Math., 8, Baltzer,
Basel, (1990), 103-109.
![]() ![]() |
|
H. Frankowska
and S. Plaskacz
, Semicontinuous solutions of Hamilton-Jacobi-Bellman equations with degenerate state constraints, J. Math. Anal. Appl., 251 (2000)
, 818-838.
doi: 10.1006/jmaa.2000.7070.![]() ![]() ![]() |
|
P. Gajardo
, C.H. Ramirez
and A. Rapaport
, Minimal time sequential batch reactors with bounded and impulse controls for one or more species, SIAM J. Control Optim., 47 (2008)
, 2827-2856.
doi: 10.1137/070695204.![]() ![]() ![]() |
|
M. Guerra
and A. Sarychev
, Fréchet generalized trajectories and minimizers for variational problems of low coercivity, J. Dyn. Control Syst., 21 (2015)
, 351-377.
doi: 10.1007/s10883-014-9231-x.![]() ![]() ![]() |
|
V. I. Gurman
, Optimal processes of singular control, Automat. Remote Control, 26 (1965)
, 783-792.
![]() ![]() |
|
D. Y. Karamzin
, V. A. de Oliveira
, F. L. Pereira
and G. N. Silva
, On the properness of an impulsive control extension of dynamic optimization problems, ESAIM Control Optim. Calc. Var., 21 (2015)
, 857-875.
doi: 10.1051/cocv/2014053.![]() ![]() ![]() |
|
V. F. Krotov, Global Methods in Optimal Control Theory, Monographs and Textbooks in Pure and Applied Mathematics, 195. Marcel Dekker, Inc., New York, 1996.
![]() ![]() |
|
K. Kunisch
and Z. Rao
, Minimal time problem with impulsive controls, Appl. Math. Optim., 75 (2017)
, 75-97.
doi: 10.1007/s00245-015-9324-2.![]() ![]() ![]() |
|
T. T. Le Thuy
and A. Marigonda
, Small-time local attainability for a class of control systems with state constraints, ESAIM Control Optim. Calc. Var., 23 (2017)
, 1003-1021.
doi: 10.1051/cocv/2016022.![]() ![]() ![]() |
|
B. M. Miller, Optimization of dynamical systems with generalized control. (Russian) Avtomat.
i Telemekh., 1989, 23-34; translation in Automat. Remote Control, 50 (1989), 733-742.
doi: MR1016198.![]() ![]() |
|
B. M. Miller, The method of discontinuous time substitution in problems of the optimal
control of impulse and discrete-continuous systems. (Russian) Avtomat. i Telemekh., 1993,
3-32; translation in Automat. Remote Control, 54 (1993), 1727-1750.
![]() |
|
B. M. Miller
, The generalized solutions of nonlinear optimization problems with impulse control, SIAM J. Control Optim., 34 (1996)
, 1420-1440.
doi: 10.1137/S0363012994263214.![]() ![]() ![]() |
|
B. M. Miller and E. Ya. Rubinovich,
Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003.
doi: 10.1007/978-1-4615-0095-7.![]() ![]() ![]() |
|
B. M. Miller and E. Ya. Rubinovich, Discontinuous solutions in the optimal control problems
and their representation by singular space-time transformations, Translation of Avtomat. i
Telemekh., 2013, 56-103. Autom. Remote Control, 74 (2013), 1969-2006.
doi: 10.1134/S0005117913120047.![]() ![]() ![]() |
|
M. Motta
and F. Rampazzo
, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls, Differential Integral Equations, 8 (1995)
, 269-288.
![]() ![]() |
|
M. Motta
and F. Rampazzo
, Dynamic programming for nonlinear systems driven by ordinary and impulsive controls, SIAM J. Control Optim., 34 (1996)
, 199-225.
doi: 10.1137/S036301299325493X.![]() ![]() ![]() |
|
M. Motta
and C. Sartori
, Minimum time with bounded energy, minimum energy with bounded time, SIAM J. Control Optim., 42 (2003)
, 789-809.
doi: 10.1137/S0363012902385284.![]() ![]() ![]() |
|
M. Motta
and C. Sartori
, Semicontinuous viscosity solutions to mixed boundary value problems with degenerate convex Hamiltonians, Nonlinear Anal., 49 (2002)
, Ser. A: Theory Methods, 905-927.
doi: 10.1016/S0362-546X(01)00137-7.![]() ![]() ![]() |
|
M. Motta
and C. Sartori
, On asymptotic exit-time control problems lacking coercivity, ESAIM Control Optim. Calc. Var., 20 (2014)
, 957-982.
doi: 10.1051/cocv/2014003.![]() ![]() ![]() |
|
M. Motta
and C. Sartori
, On $L^1$ limit solutions in impulsive control, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018)
, 1201-1218.
doi: 10.3934/dcdss.2018068.![]() ![]() ![]() |
|
M. Motta
and C. Sartori
, Lack of BV bounds for impulsive control systems, J. Math. Anal. Appl., 461 (2018)
, 422-450.
doi: 10.1016/j.jmaa.2018.01.019.![]() ![]() ![]() |
|
F. Rampazzo
and C. Sartori
, The minimum time function with unbounded controls, J. Math. Systems Estim. Control, 8 (1998)
, 1-34.
![]() ![]() |
|
A. Razmadzé
, Sur les solutions discontinues dans le calcul des variations, (French) Math. Ann., 94 (1925)
, 1-52.
doi: 10.1007/BF01208643.![]() ![]() ![]() |
|
R. Rishel
, An extended Pontryagin principle for control systems whose control laws contain measures, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965)
, 191-205.
doi: 10.1137/0303016.![]() ![]() ![]() |
|
R. T. Rockafellar, Convex Analysis, Princeton, NJ: Princeton University Press, Princeton, NJ, 1997.
![]() ![]() |
|
P. Soravia
, Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. Ⅱ. Equations of control problems with state constraints, Differential Integral Equations, 12 (1999)
, 275-293.
![]() ![]() |
|
J. Warga
, Relaxed variational problems, J. Math. Anal. Appl., 4 (1962)
, 111-128.
doi: 10.1016/0022-247X(62)90033-1.![]() ![]() ![]() |
|
J. Warga
, Variational problems with unbounded controls, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1966)
, 424-438.
doi: 10.1137/0303028.![]() ![]() |
|
A. J. Zaslavski
, Nonoccurrence of the Lavrentiev phenomenon for many optimal control problems, SIAM J. Control Optim., 45 (2006)
, 1116-1146.
doi: 10.1137/050640370.![]() ![]() |