In this paper, we consider nonlocal Schrödinger equations with certain potentials
$\begin{equation*}L_K u+V u = f\,\,\text{ in }\; \mathbb{R}^n \end{equation*}$
where
$\begin{equation}\begin{cases}L_K u+V u = 0\,\,&\text{ in }\; \Omega,\\ u = g\,\,&\text{ in }\; \mathbb{R}^n\backslash\Omega, \;\;\;\;\;\;\;\;\; (1)\end{cases}\end{equation}$
where
Citation: |
J. Bourgain
, H. Brezis
and P. Mironescu
, Limiting embedding theorems for Ws, p when s↑1 and applications, J. Anal. Math., 87 (2002)
, 77-101.
doi: 10.1007/BF02868470.![]() ![]() ![]() |
|
W. Choi
and Y.-C. Kim
, The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potential, Comm. Pure and Appl. Anal., 17 (2018)
, 1993-2010.
doi: 10.3934/cpaa.2018095.![]() ![]() ![]() |
|
A. Di Castro
, T. Kuusi
and G. Palatucci
, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014)
, 1807-1836.
doi: 10.1016/j.jfa.2014.05.023.![]() ![]() ![]() |
|
A. Di Castro
, T. Kuusi
and G. Palatucci
, Local behavior of fractional $p$-minimizers, Ann. I. H. Poincaré-AN, 33 (2016)
, 1279-1299.
doi: 10.1016/j.anihpc.2015.04.003.![]() ![]() ![]() |
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
C. Fefferman
, The uncertainty principle, Bull. Amer. Math. Soc.(N.S.), 9 (1983)
, 129-206.
doi: 10.1090/S0273-0979-1983-15154-6.![]() ![]() ![]() |
|
M. Felsinger
and M. Kassmann
, Local regularity for parabolic nonlocal operators, Comm. Partial Differential Equations, 38 (2013)
, 1539-1573.
doi: 10.1080/03605302.2013.808211.![]() ![]() ![]() |
|
Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, American Mathematical Society, 1997.
![]() ![]() |
|
T. Kuusi
, G. Mingione
and Y. Sire
, Nonlocal equations with measure data, Comm. Math. phys., 337 (2015)
, 1317-1368.
doi: 10.1007/s00220-015-2356-2.![]() ![]() ![]() |
|
V. Maz'ya
and T. Shaposhnikova
, On the Bourgain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 201 (2003)
, 298-300.
doi: 10.1016/S0022-1236(03)00002-8.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013)
, 2105-2137.
![]() ![]() |
|
Z. Shen
, Lp estimates for Schrödinger operators with certain potentials, Annales de l'institut Fourier, 45 (1995)
, 513-546.
doi: 10.5802/aif.1463.![]() ![]() ![]() |
|
Z. Shen
, On Fundamental Solutions of Generalized Schrödinger Operators, J. Funct. Anal., 167 (1999)
, 521-564.
doi: 10.1006/jfan.1999.3455.![]() ![]() ![]() |
|
E. M. Stein,
Harmonic Analysis; Real Variable Methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, 1993.
![]() ![]() |
The range of