We consider a class of parametric Schrödinger equations driven by the fractional $p$-Laplacian operator and involving continuous positive potentials and nonlinearities with subcritical or critical growth. Using variational methods and Ljusternik-Schnirelmann theory, we study the existence, multiplicity and concentration of positive solutions for small values of the parameter.
Citation: |
C. O. Alves
, Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian, Nonlinear Anal., 51 (2002)
, 1187-1206.
doi: 10.1016/S0362-546X(01)00887-2.![]() ![]() ![]() |
|
C. O. Alves
and V. Ambrosio
, A multiplicity result for a nonlinear fractional Schrödinger equation in $\mathbb{R}^{N}$ without the Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 466 (2018)
, 498-522.
doi: 10.1016/j.jmaa.2018.06.005.![]() ![]() ![]() |
|
C. O. Alves
and G. M. Figueiredo
, Existence and multiplicity of positive solutions to a p-Laplacian equation in $\mathbb{R}^{N}$, Differential Integral Equations, 19 (2006)
, 143-162.
![]() ![]() |
|
C. O. Alves and O. H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R}^{N}$ via penalization method, Calc. Var. Partial Differential Equations, 55 (2016), Art. 47, 19 pp.
doi: 10.1007/s00526-016-0983-x.![]() ![]() ![]() |
|
V. Ambrosio, Multiple solutions for a fractional p-Laplacian equation with sign-changing potential, Electron. J. Diff. Equ., 2016 (2016), Paper No. 151, 12 pp.
![]() ![]() |
|
V. Ambrosio
, Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, Ann. Mat. Pura Appl., 196 (2017)
, 2043-2062.
doi: 10.1007/s10231-017-0652-5.![]() ![]() ![]() |
|
V. Ambrosio
, Concentration phenomena for critical fractional Schrödinger systems, Commun. Pure Appl. Anal., 17 (2018)
, 2085-2123.
doi: 10.3934/cpaa.2018099.![]() ![]() ![]() |
|
V. Ambrosio, Concentrating solutions for a class of nonlinear fractional Schrödinger equations in $\mathbb{R}^{N}$,
Rev. Mat. Iberoam., (in press), arXiv:1612.02388.
![]() |
|
V. Ambrosio
and G. M. Figueiredo
, Ground state solutions for a fractional Schrödinger equation with critical growth, Asymptot. Anal., 105 (2017)
, 159-191.
doi: 10.3233/ASY-171438.![]() ![]() ![]() |
|
V. Ambrosio
and T. Isernia
, Concentration phenomena for a fractional Schrödinger-Kirchhoff type problem, Math. Methods Appl. Sci., 41 (2018)
, 615-645.
![]() ![]() |
|
P. Belchior
, H. Bueno
, O. H. Miyagaki
and G. A. Pereira
, Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay, Nonlinear Analysis, 164 (2017)
, 38-53.
doi: 10.1016/j.na.2017.08.005.![]() ![]() ![]() |
|
V. Benci
and G. Cerami
, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations, 2 (1994)
, 29-48.
doi: 10.1007/BF01234314.![]() ![]() ![]() |
|
L. Brasco, S. Mosconi and M. Squassina, Optimal decay of extremals for the fractional Sobolev inequality, Calc. Var. Partial Differential Equations, 55 (2016), Art. 23, 32 pp.
doi: 10.1007/s00526-016-0958-y.![]() ![]() ![]() |
|
H. Brézis
and E. Lieb
, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983)
, 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
L. M. Del Pezzo
and A. Quaas
, A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian, J. Differential Equations, 263 (2017)
, 765-778.
doi: 10.1016/j.jde.2017.02.051.![]() ![]() ![]() |
|
A. Di Castro
, T. Kuusi
and G. Palatucci
, Local behavior of fractional p-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016)
, 1279-1299.
doi: 10.1016/j.anihpc.2015.04.003.![]() ![]() ![]() |
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
Y. Ding,
Variational Methods for Strongly Indefinite Problems, Interdisciplinary Mathematical Sciences, 7. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. ⅷ+168 pp.
doi: 10.1142/9789812709639.![]() ![]() ![]() |
|
S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb{R}^{n}$. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15. Edizioni della Normale, Pisa, 2017. ⅷ+152 pp.
doi: 10.1007/978-88-7642-601-8.![]() ![]() ![]() |
|
I. Ekeland
, On the variational principle, J. Math. Anal. Appl., 47 (1974)
, 324-353.
doi: 10.1016/0022-247X(74)90025-0.![]() ![]() ![]() |
|
P. Felmer
, A. Quaas
and J. Tan
, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012)
, 1237-1262.
doi: 10.1017/S0308210511000746.![]() ![]() ![]() |
|
G. M. Figueiredo
, Existence, multiplicity and concentration of positive solutions for a class of quasilinear problems with critical growth, Comm. Appl. Nonlinear Anal., 13 (2006)
, 79-99.
![]() ![]() |
|
G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in $\mathbb{R}^{N}$,
NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 12, 22 pp.
doi: 10.1007/s00030-016-0355-4.![]() ![]() ![]() |
|
A. Fiscella
and P. Pucci
, Kirchhoff-Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud., 17 (2017)
, 429-456.
doi: 10.1515/ans-2017-6021.![]() ![]() ![]() |
|
G. Franzina
and G. Palatucci
, Fractional p-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014)
, 373-386.
![]() ![]() |
|
A. Iannizzotto
, S. Mosconi
and M. Squassina
, Global Hölder regularity for the fractional p-Laplacian, Rev. Mat. Iberoam., 32 (2016)
, 1353-1392.
doi: 10.4171/RMI/921.![]() ![]() ![]() |
|
T. Isernia
, Positive solution for nonhomogeneous sublinear fractional equations in $\mathbb{R}^{N}$, Complex Var. Elliptic Equ., 63 (2018)
, 689-714.
doi: 10.1080/17476933.2017.1332052.![]() ![]() ![]() |
|
N. Laskin
, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000)
, 298-305.
doi: 10.1016/S0375-9601(00)00201-2.![]() ![]() ![]() |
|
N. Laskin, Fractional Schrödinger equation,
Phys. Rev. E, 66 (2002), 056108, 7pp.
doi: 10.1103/PhysRevE.66.056108.![]() ![]() ![]() |
|
E. Lindgren
and P. Lindqvist
, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014)
, 795-826.
doi: 10.1007/s00526-013-0600-1.![]() ![]() ![]() |
|
J. Mawhin and M. Willem,
Critical Point Theory and Hamiltonian Systems, Springer-Verlag, 1989.
doi: 10.1007/978-1-4757-2061-7.![]() ![]() ![]() |
|
C. Mercuri
and M. Willem
, A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete Contin. Dyn. Syst., 28 (2010)
, 469-493.
doi: 10.3934/dcds.2010.28.469.![]() ![]() ![]() |
|
G. Molica Bisci, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, 162, Cambridge, 2016.
doi: 10.1017/CBO9781316282397.![]() ![]() ![]() |
|
S. Mosconi, K. Perera, M. Squassina and Y. Yang, The Brezis-Nirenberg problem for the fractional p-Laplacian, Calc. Var. Partial Differential Equations, 55 (2016), Art. 105, 25 pp.
doi: 10.1007/s00526-016-1035-2.![]() ![]() ![]() |
|
J. Moser
, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13 (1960)
, 457-468.
doi: 10.1002/cpa.3160130308.![]() ![]() ![]() |
|
G. Palatucci
and A. Pisante
, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014)
, 799-829.
doi: 10.1007/s00526-013-0656-y.![]() ![]() ![]() |
|
P. Rabinowitz
, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992)
, 270-291.
doi: 10.1007/BF00946631.![]() ![]() ![]() |
|
S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb{R}^{N}$,
J. Math. Phys., 54 (2013), 031501, 17pp.
doi: 10.1063/1.4793990.![]() ![]() ![]() |
|
X. Shang, J. Zhang and Y. Yang, On fractional Schrödinger equations with critical growth, J. Math. Phys., 54 (2013), 121502, 20 pp.
doi: 10.1063/1.4835355.![]() ![]() ![]() |
|
A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Nonconvex Analysis and Applications, edited by D. Y. Gao and D. Montreanu, International Press, Boston, 2010,597–632.
![]() ![]() |
|
J. Zhang
, Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys., 51 (2000)
, 498-503.
doi: 10.1007/PL00001512.![]() ![]() ![]() |