- Previous Article
- DCDS Home
- This Issue
-
Next Article
The diffusion phenomenon for damped wave equations with space-time dependent coefficients
Global existence and boundedness in a chemorepulsion system with superlinear diffusion
Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany |
$\Omega\subset\mathbb{R}^n$ |
$n\ge 3$ |
$\begin{equation*}\begin{cases}u_t = \nabla\cdot({D(u)\nabla u+u\nabla v}) \;\;\; &\text{in}\ \Omega\times(0,\infty)\\v_t = \Delta v-v+u &\text{in}\ \Omega\times(0,\infty)\end{cases}\end{equation*}$ |
$D(u)\geq Cu^{m-1}$ |
$D(0)>0$ |
$m>1+\frac{(n-2)(n-1)}{n^2}$ |
$D(0) = 0$ |
References:
[1] |
N. Bellomo, A. Belloquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
H. Brezis and P. Mironescu,
Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., 1 (2001), 387-404.
doi: 10.1007/PL00001378. |
[3] |
X. Cao,
Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discr. Cont. Dyn. Syst. A, 35 (2005), 1891-1904.
doi: 10.3934/dcds.2015.35.1891. |
[4] |
T. Cieślak,
Quasilinear nonuniformly parabolic system modeling chemotaxis, J. Math. Anal. Appl., 326 (2007), 1410-1426.
doi: 10.1016/j.jmaa.2006.03.080. |
[5] |
T. Cieślak and C. Stinner,
Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel systems in higher dimensions, J. Math. Anal. Appl., 326 (2007), 1410-1426.
doi: 10.1016/j.jde.2012.01.045. |
[6] |
T. Cieślak and C. Stinner,
New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models, J. Differ. Eq., 258 (2015), 2080-2113.
doi: 10.1016/j.jde.2014.12.004. |
[7] |
T. Cieślak, P. Laurençot and C. Morales-Rodrigo,
Global existence and convergence to steady-states in a chemorepulsion system, Banach Center Publications, 81 (2008), 105-117.
doi: 10.4064/bc81-0-7. |
[8] |
X., Fu, L. H. Tang, C. Liu, J. D. Huang, T. Hwa and P. Lenz, Stripe formation in bacterial systems with density-suppressed motility, Phys. Rev. Lett., 108 (2012), 198102. |
[9] |
K. Fujie, A. Ito, M. Winkler and T. Yokota,
Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151-169.
doi: 10.3934/dcds.2016.36.151. |
[10] |
H. Gajewski and K. Zacharias,
Global behaviour of a reaction diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.
doi: 10.1002/mana.19981950106. |
[11] |
M. A. Herrero and J. J. L. Velázquez,
A blow-up mechanism for a chemotaxis model, Ann. Scuola Normale Superiore, 24 (1997), 633-683.
|
[12] |
T. Hillen and K. J. Painter,
Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.
|
[13] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for chemotaxis, J. Math Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[14] |
D. Horstmann and G. Wang,
Blow-up in a chemotaxis model without symmetry assumptions, Eur J. Appl. Math., 12 (2001), 159-177.
doi: 10.1017/S0956792501004363. |
[15] |
D. Horstmann and M. Winkler,
Boundedness vs! blow-up in a chemotaxis system, Journal of Differential Equations, 215 (2015), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[16] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[17] |
R. Kowalczyk and Z. Szymańska,
On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.
doi: 10.1016/j.jmaa.2008.01.005. |
[18] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type, Amer. math. Soc., Providence RI. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 1968. |
[19] |
J. Lankeit,
Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, Journal of Differential Equations, 262 (2017), 4052-4084.
doi: 10.1016/j.jde.2016.12.007. |
[20] |
H. A. Levine and B. D. Sleeman,
Partial differential equations of chemotaxis and angiogenesis. Applied mathematical analysis in the last century, Math. Meth. Appl. Sci., 24 (2001), 405-426.
doi: 10.1002/mma.212. |
[21] |
J. F Leyva, C. Málaga and R. G. Plaza,
The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion, Physica A, 392 (2013), 5644-5662.
doi: 10.1016/j.physa.2013.07.022. |
[22] |
N. Mizoguchi and P. Souplet,
Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Annales de l'Institut Henri Poincaré C, Analyse non liné aire, 31 (2013), 851-875.
doi: 10.1016/j.anihpc.2013.07.007. |
[23] |
N. Mizoguchi and M. Winkler,
Finite-time blow-up in the two-dimensional parabolic Keller-Segel system, J. Math. Pures Appl. (9), 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[24] |
T. Nagai, T. Senba and K. Yoshida,
Applications of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcialaj Ekvacioj, Ser. Int., 40 (1997), 411-433.
|
[25] |
L. Nirenberg,
An extended interpolation inequality, Annali della Scuola Normale Superiore di Pisa, Classe die Scienze 3e sé rie, 20 (1966), 733-737.
|
[26] |
K. Osaki and A. Yagi,
Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2011), 441-469.
|
[27] |
T. Senba and T. Suzuki, A quasi-linear system of chemotaxis, Abstr. Appl. Anal., 2006 (2006), Art. ID 23061, 21 pp.
doi: 10.1155/AAA/2006/23061. |
[28] |
J. Simon,
Compact sets in the space $L^p\left(0, T;B \right)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[29] |
C. Stinner, C. Surulescu and A. Uatay,
Global existence for a go-or-grow multiscale model for tumor invasion with therapy, Math. Mod. Meth. Appl. Sci., 26 (2016), 2163-2201.
doi: 10.1142/S021820251640011X. |
[30] |
C. Stinner, C. Surulescu and M. Winkler,
Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.
doi: 10.1137/13094058X. |
[31] |
Y. Tao,
Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705-2722.
doi: 10.3934/dcdsb.2013.18.2705. |
[32] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, Journal of Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[33] |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wohlgemuth, J. O. Kessler and R. E. Goldstein,
Bacterial swimming and oxygen transport near contact lines, Proc. Nat. Accad. Sci. USA, 102 (2005), 2277-2282.
doi: 10.1073/pnas.0406724102. |
[34] |
M. Winkler,
Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664-1673.
doi: 10.1002/mana.200810838. |
[35] |
M. Winkler,
Does a volume-filling effect always prevent chemotactic collapse?, Math. Meth. Appl. Sci., 33 (2010), 12-24.
doi: 10.1002/mma.1146. |
[36] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Jornal of Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[37] |
D. Wrzosek,
Volume filling effect in modelling chemotaxis, Math. Mod. Nat. Phenom., 5 (2010), 123-147.
doi: 10.1051/mmnp/20105106. |
show all references
References:
[1] |
N. Bellomo, A. Belloquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
H. Brezis and P. Mironescu,
Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., 1 (2001), 387-404.
doi: 10.1007/PL00001378. |
[3] |
X. Cao,
Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discr. Cont. Dyn. Syst. A, 35 (2005), 1891-1904.
doi: 10.3934/dcds.2015.35.1891. |
[4] |
T. Cieślak,
Quasilinear nonuniformly parabolic system modeling chemotaxis, J. Math. Anal. Appl., 326 (2007), 1410-1426.
doi: 10.1016/j.jmaa.2006.03.080. |
[5] |
T. Cieślak and C. Stinner,
Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel systems in higher dimensions, J. Math. Anal. Appl., 326 (2007), 1410-1426.
doi: 10.1016/j.jde.2012.01.045. |
[6] |
T. Cieślak and C. Stinner,
New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models, J. Differ. Eq., 258 (2015), 2080-2113.
doi: 10.1016/j.jde.2014.12.004. |
[7] |
T. Cieślak, P. Laurençot and C. Morales-Rodrigo,
Global existence and convergence to steady-states in a chemorepulsion system, Banach Center Publications, 81 (2008), 105-117.
doi: 10.4064/bc81-0-7. |
[8] |
X., Fu, L. H. Tang, C. Liu, J. D. Huang, T. Hwa and P. Lenz, Stripe formation in bacterial systems with density-suppressed motility, Phys. Rev. Lett., 108 (2012), 198102. |
[9] |
K. Fujie, A. Ito, M. Winkler and T. Yokota,
Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151-169.
doi: 10.3934/dcds.2016.36.151. |
[10] |
H. Gajewski and K. Zacharias,
Global behaviour of a reaction diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.
doi: 10.1002/mana.19981950106. |
[11] |
M. A. Herrero and J. J. L. Velázquez,
A blow-up mechanism for a chemotaxis model, Ann. Scuola Normale Superiore, 24 (1997), 633-683.
|
[12] |
T. Hillen and K. J. Painter,
Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.
|
[13] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for chemotaxis, J. Math Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[14] |
D. Horstmann and G. Wang,
Blow-up in a chemotaxis model without symmetry assumptions, Eur J. Appl. Math., 12 (2001), 159-177.
doi: 10.1017/S0956792501004363. |
[15] |
D. Horstmann and M. Winkler,
Boundedness vs! blow-up in a chemotaxis system, Journal of Differential Equations, 215 (2015), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[16] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[17] |
R. Kowalczyk and Z. Szymańska,
On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.
doi: 10.1016/j.jmaa.2008.01.005. |
[18] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type, Amer. math. Soc., Providence RI. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 1968. |
[19] |
J. Lankeit,
Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, Journal of Differential Equations, 262 (2017), 4052-4084.
doi: 10.1016/j.jde.2016.12.007. |
[20] |
H. A. Levine and B. D. Sleeman,
Partial differential equations of chemotaxis and angiogenesis. Applied mathematical analysis in the last century, Math. Meth. Appl. Sci., 24 (2001), 405-426.
doi: 10.1002/mma.212. |
[21] |
J. F Leyva, C. Málaga and R. G. Plaza,
The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion, Physica A, 392 (2013), 5644-5662.
doi: 10.1016/j.physa.2013.07.022. |
[22] |
N. Mizoguchi and P. Souplet,
Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Annales de l'Institut Henri Poincaré C, Analyse non liné aire, 31 (2013), 851-875.
doi: 10.1016/j.anihpc.2013.07.007. |
[23] |
N. Mizoguchi and M. Winkler,
Finite-time blow-up in the two-dimensional parabolic Keller-Segel system, J. Math. Pures Appl. (9), 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[24] |
T. Nagai, T. Senba and K. Yoshida,
Applications of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcialaj Ekvacioj, Ser. Int., 40 (1997), 411-433.
|
[25] |
L. Nirenberg,
An extended interpolation inequality, Annali della Scuola Normale Superiore di Pisa, Classe die Scienze 3e sé rie, 20 (1966), 733-737.
|
[26] |
K. Osaki and A. Yagi,
Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2011), 441-469.
|
[27] |
T. Senba and T. Suzuki, A quasi-linear system of chemotaxis, Abstr. Appl. Anal., 2006 (2006), Art. ID 23061, 21 pp.
doi: 10.1155/AAA/2006/23061. |
[28] |
J. Simon,
Compact sets in the space $L^p\left(0, T;B \right)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[29] |
C. Stinner, C. Surulescu and A. Uatay,
Global existence for a go-or-grow multiscale model for tumor invasion with therapy, Math. Mod. Meth. Appl. Sci., 26 (2016), 2163-2201.
doi: 10.1142/S021820251640011X. |
[30] |
C. Stinner, C. Surulescu and M. Winkler,
Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.
doi: 10.1137/13094058X. |
[31] |
Y. Tao,
Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705-2722.
doi: 10.3934/dcdsb.2013.18.2705. |
[32] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, Journal of Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[33] |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wohlgemuth, J. O. Kessler and R. E. Goldstein,
Bacterial swimming and oxygen transport near contact lines, Proc. Nat. Accad. Sci. USA, 102 (2005), 2277-2282.
doi: 10.1073/pnas.0406724102. |
[34] |
M. Winkler,
Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664-1673.
doi: 10.1002/mana.200810838. |
[35] |
M. Winkler,
Does a volume-filling effect always prevent chemotactic collapse?, Math. Meth. Appl. Sci., 33 (2010), 12-24.
doi: 10.1002/mma.1146. |
[36] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Jornal of Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[37] |
D. Wrzosek,
Volume filling effect in modelling chemotaxis, Math. Mod. Nat. Phenom., 5 (2010), 123-147.
doi: 10.1051/mmnp/20105106. |
[1] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[2] |
Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103 |
[3] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
[4] |
Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683 |
[5] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[6] |
Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022075 |
[7] |
Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 |
[8] |
Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027 |
[9] |
Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020 |
[10] |
Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 |
[11] |
Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096 |
[12] |
Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661 |
[13] |
Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051 |
[14] |
Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121 |
[15] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[16] |
Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025 |
[17] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[18] |
Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449 |
[19] |
Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905 |
[20] |
Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]