
-
Previous Article
Breathers as metastable states for the discrete NLS equation
- DCDS Home
- This Issue
-
Next Article
Arnold diffusion for a complete family of perturbations with two independent harmonics
Classification of irregular free boundary points for non-divergence type equations with discontinuous coefficients
1. | School of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia |
2. | Maxwell Institute for Mathematical Sciences and School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom |
3. | Istituto di Matematica Applicata e Tecnologie Informatiche, Consiglio Nazionale delle Ricerche, Via Ferrata 1, 27100 Pavia, Italy |
4. | Dipartimento di Matematica, Università degli studi di Milano, Via Saldini 50, 20133 Milan, Italy |
We provide an integral estimate for a non-divergence (non-varia-tional) form second order elliptic equation $a_{ij}u_{ij} = u^p$, $u≥ 0$, $p∈[0, 1)$, with bounded discontinuous coefficients $a_{ij}$ having small BMO norm. We consider the simplest discontinuity of the form $x\otimes x|x|^{-2}$ at the origin. As an application we show that the free boundary corresponding to the obstacle problem (i.e. when $p = 0$) cannot be smooth at the points of discontinuity of $a_{ij}(x)$.
To implement our construction, an integral estimate and a scale invariance will provide the homogeneity of the blow-up sequences, which then can be classified using ODE arguments.
References:
[1] |
H. W. Alt and D. Phillips,
A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math., 368 (1986), 63-107.
|
[2] |
D. J. Araújo, R. Leitão and E. V. Teixeira,
Infinity Laplacian equation with strong absorptions, J. Funct. Anal., 270 (2016), 2249-2267.
doi: 10.1016/j.jfa.2015.12.012. |
[3] |
I. Blank and K. Teka,
The Caffarelli alternative in measure for the nondivergence form elliptic obstacle problem with principal coefficients in VMO, Comm. Partial Differential Equations, 39 (2014), 321-353.
doi: 10.1080/03605302.2013.823988. |
[4] |
X. Cabré,
Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions, Discrete Contin. Dyn. Syst., 20 (2008), 425-457.
doi: 10.3934/dcds.2008.20.425. |
[5] |
L. A. Caffarelli,
The regularity of free boundaries in higher dimensions, Acta Math., 139 (1977), 155-184.
doi: 10.1007/BF02392236. |
[6] |
L. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problems, Providence: American Mathematical Society, 2005.
doi: 10.1090/gsm/068. |
[7] |
F. Chiarenza, M. Frasca and P. Longo,
W2, p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (1993), 841-853.
doi: 10.2307/2154379. |
[8] |
S. Dipierro, O. Savin and E. Valdinoci,
A nonlocal free boundary problem, SIAM J. Math. Anal., 47 (2015), 4559-4605.
doi: 10.1137/140999712. |
[9] |
M. Focardi, M. S. Gelli and E. Spadaro,
Monotonicity formulas for obstacle problems with Lipschitz coefficients, Calc. Var. Partial Differential Equations, 54 (2015), 1547-1573.
doi: 10.1007/s00526-015-0835-0. |
[10] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, New York: Springer-Verlag, 1998. |
[11] |
A. Karakhanyan, Minimal Surfaces Arising in Singular Perturbation Problems, Preprint, 2016. |
[12] |
M. Kassmann, Harnack inequalities: An introduction, Bound. Value Probl., 2007 (2007), Art. ID 81415, 21 pp. |
[13] |
A. Petrosyan, H. Shahgholian and N. Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems, Providence: American Mathematical Society, 2012.
doi: 10.1090/gsm/136. |
[14] |
D. dos Prazeres and E. V. Teixeira, Cavity problems in discontinuous media, Calc. Var. Partial Differential Equations, 55 (2016), Art. 10, 15 pp.
doi: 10.1007/s00526-016-0955-1. |
[15] |
J. Spruck,
Uniqueness in a diffusion model of population biology, Comm. Partial Differential Equations, 8 (1983), 1605-1620.
doi: 10.1080/03605308308820317. |
[16] |
E. V. Teixeira,
Hessian continuity at degenerate points in nonvariational elliptic problems, Int. Math. Res. Not. IMRN, (2015), 6893-6906.
doi: 10.1093/imrn/rnu150. |
[17] |
E. V. Teixeira,
Regularity for the fully nonlinear dead-core problem, Math. Ann., 364 (2016), 1121-1134.
doi: 10.1007/s00208-015-1247-3. |
[18] |
N. Trudinger, Elliptic equations in non-divergence form, Miniconference on Partial Differential Equations(Canberra, 1981), Proc. Centre Math. Anal. Austral. Nat. Univ., 1, Austral. Nat. Univ., Canberra, 1982, 1-16. |
show all references
References:
[1] |
H. W. Alt and D. Phillips,
A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math., 368 (1986), 63-107.
|
[2] |
D. J. Araújo, R. Leitão and E. V. Teixeira,
Infinity Laplacian equation with strong absorptions, J. Funct. Anal., 270 (2016), 2249-2267.
doi: 10.1016/j.jfa.2015.12.012. |
[3] |
I. Blank and K. Teka,
The Caffarelli alternative in measure for the nondivergence form elliptic obstacle problem with principal coefficients in VMO, Comm. Partial Differential Equations, 39 (2014), 321-353.
doi: 10.1080/03605302.2013.823988. |
[4] |
X. Cabré,
Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions, Discrete Contin. Dyn. Syst., 20 (2008), 425-457.
doi: 10.3934/dcds.2008.20.425. |
[5] |
L. A. Caffarelli,
The regularity of free boundaries in higher dimensions, Acta Math., 139 (1977), 155-184.
doi: 10.1007/BF02392236. |
[6] |
L. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problems, Providence: American Mathematical Society, 2005.
doi: 10.1090/gsm/068. |
[7] |
F. Chiarenza, M. Frasca and P. Longo,
W2, p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (1993), 841-853.
doi: 10.2307/2154379. |
[8] |
S. Dipierro, O. Savin and E. Valdinoci,
A nonlocal free boundary problem, SIAM J. Math. Anal., 47 (2015), 4559-4605.
doi: 10.1137/140999712. |
[9] |
M. Focardi, M. S. Gelli and E. Spadaro,
Monotonicity formulas for obstacle problems with Lipschitz coefficients, Calc. Var. Partial Differential Equations, 54 (2015), 1547-1573.
doi: 10.1007/s00526-015-0835-0. |
[10] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, New York: Springer-Verlag, 1998. |
[11] |
A. Karakhanyan, Minimal Surfaces Arising in Singular Perturbation Problems, Preprint, 2016. |
[12] |
M. Kassmann, Harnack inequalities: An introduction, Bound. Value Probl., 2007 (2007), Art. ID 81415, 21 pp. |
[13] |
A. Petrosyan, H. Shahgholian and N. Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems, Providence: American Mathematical Society, 2012.
doi: 10.1090/gsm/136. |
[14] |
D. dos Prazeres and E. V. Teixeira, Cavity problems in discontinuous media, Calc. Var. Partial Differential Equations, 55 (2016), Art. 10, 15 pp.
doi: 10.1007/s00526-016-0955-1. |
[15] |
J. Spruck,
Uniqueness in a diffusion model of population biology, Comm. Partial Differential Equations, 8 (1983), 1605-1620.
doi: 10.1080/03605308308820317. |
[16] |
E. V. Teixeira,
Hessian continuity at degenerate points in nonvariational elliptic problems, Int. Math. Res. Not. IMRN, (2015), 6893-6906.
doi: 10.1093/imrn/rnu150. |
[17] |
E. V. Teixeira,
Regularity for the fully nonlinear dead-core problem, Math. Ann., 364 (2016), 1121-1134.
doi: 10.1007/s00208-015-1247-3. |
[18] |
N. Trudinger, Elliptic equations in non-divergence form, Miniconference on Partial Differential Equations(Canberra, 1981), Proc. Centre Math. Anal. Austral. Nat. Univ., 1, Austral. Nat. Univ., Canberra, 1982, 1-16. |

[1] |
Andrea Bonfiglioli, Ermanno Lanconelli and Francesco Uguzzoni. Levi's parametrix for some sub-elliptic non-divergence form operators. Electronic Research Announcements, 2003, 9: 10-18. |
[2] |
Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267 |
[3] |
Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009 |
[4] |
C. Brändle, F. Quirós, Julio D. Rossi. Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary. Communications on Pure and Applied Analysis, 2005, 4 (3) : 523-536. doi: 10.3934/cpaa.2005.4.523 |
[5] |
Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935 |
[6] |
Lan Qiao, Sining Zheng. Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1113-1129. doi: 10.3934/cpaa.2007.6.1113 |
[7] |
Amal Attouchi, Eero Ruosteenoja. Gradient regularity for a singular parabolic equation in non-divergence form. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5955-5972. doi: 10.3934/dcds.2020254 |
[8] |
Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11 |
[9] |
Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881 |
[10] |
Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271 |
[11] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[12] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
[13] |
Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 |
[14] |
Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1 |
[15] |
Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54 |
[16] |
Pablo Álvarez-Caudevilla, V. A. Galaktionov. Blow-up scaling and global behaviour of solutions of the bi-Laplace equation via pencil operators. Communications on Pure and Applied Analysis, 2016, 15 (1) : 261-286. doi: 10.3934/cpaa.2016.15.261 |
[17] |
Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011 |
[18] |
Jingxue Yin, Chunhua Jin. Critical exponents and traveling wavefronts of a degenerate-singular parabolic equation in non-divergence form. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 213-227. doi: 10.3934/dcdsb.2010.13.213 |
[19] |
Hiroyuki Takamura, Hiroshi Uesaka, Kyouhei Wakasa. Sharp blow-up for semilinear wave equations with non-compactly supported data. Conference Publications, 2011, 2011 (Special) : 1351-1357. doi: 10.3934/proc.2011.2011.1351 |
[20] |
Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]