
-
Previous Article
Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$
- DCDS Home
- This Issue
-
Next Article
Combined effects of the spatial heterogeneity and the functional response
Single phytoplankton species growth with light and crowding effect in a water column
School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China |
We investigate a nonlocal reaction-diffusion-advection model which describes the growth of a single phytoplankton species in a water column with crowding effect. The longtime dynamical behavior of this model and the asymptotic profiles of its positive steady states for small crowding effect and large advection rate are established. The results show that there is a critical death rate such that the phytoplankton species survives if and only if its death rate is less than the critical death rate. In contrast to the model without crowding effect, our results show that the density of the phytoplankton species will have a finite limit rather than go to infinity when the death rate disappears. Furthermore, for large sinking rate, the phytoplankton species concentrates at the bottom of the water column with a finite population density. For large buoyant rate, the phytoplankton species concentrates at the surface of the water column with a finite population density.
References:
[1] |
K. R. Arrigo, D. H. Robinson and D. L. Worthen, et al, Phytoplankton community structure
and the drawdown of nutrients and CO2 in the Southern Ocean, Science, 283 (1999), 365-367. http://science.sciencemag.org/content/283/5400/365. |
[2] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[3] |
R. Courant and D. Hilbert,
Methods of Mathematical Physics, Vol. Ⅰ, Interscience Publishers, New York, 1953. |
[4] |
E. N. Dancer,
On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.
doi: 10.1016/0022-247X(83)90098-7. |
[5] |
E. N. Dancer,
On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.
doi: 10.1090/S0002-9947-1984-0743741-4. |
[6] |
E. N. Dancer and Y. Du,
Positive solutions for a three-competition system with diffusion-Ⅰ.
General existence results, Nonlinear Anal., 24 (1995), 337-357.
doi: 10.1016/0362-546X(94)E0063-M. |
[7] |
G. R. DiTullio, J. M. Grebmeier, K. R. Arrigo, et al, Rapid and early export of Phaeocystis
antarctica blooms in the Ross Sea, Antarctica, Nature, 404 (2000), 595-598. https://www.nature.com/articles/35007061. |
[8] |
Y. Du and S. B. Hsu,
On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333.
doi: 10.1137/090775105. |
[9] |
Y. Du and L. Mei,
On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349.
doi: 10.1088/0951-7715/24/1/016. |
[10] |
Y. Du, S. B Hsu and Y. Lou,
Multiple steady-states in phytoplankton population induced by photoinhibition, J. Differential Equations, 258 (2015), 2408-2434.
doi: 10.1016/j.jde.2014.12.012. |
[11] |
U. Ebert, M. Arrayas, N. Temme, B. Sommeojer and J. Huisman, Critical condition for
phytoplankton blooms, Bull. Math. Biol., 63 (2001), 1095-1124. https://link.springer.com/article/10.1006/bulm.2001.0261. |
[12] |
P. G. Falkowski, R. T. Barber and V. Smetacek, Biogeochemical controls and feedbacks on
ocean primary production, Science, 281 (1998), 200-206. http://science.sciencemag.org/content/281/5374/200. |
[13] |
I. Ghoberg, S. Goldberg and M. A. Kaashoek,
Classes of Linear Operators,
Vol. I Birkhäuser-Basel, Basel, 1990.http://b-ok.xyz/book/461145/3b6523.
doi: 10.1007/978-3-0348-7509-7. |
[14] |
S. B. Hsu and Y. Lou,
Single phytoplankton species growth with light and advection in a
water column, SIAM J. Math. Anal., 70 (2010), 2942-2974.
doi: 10.1137/100782358. |
[15] |
J. Huisman, M. Arrayas, U. Ebert, et al, How do sinking phytoplankton species manage to
persist?, Amer. Nat., 159 (2002), 245-254. https://www.journals.uchicago.edu/doi/abs/10.1086/338511. |
[16] |
J. Huisman, P. van Oostveen and F. J. Weissing, Species dynamics in phytoplankton blooms:
incomplete mixing and competition for light, Amer. Nat., 154 (1999), 46-68.https://www.journals.uchicago.edu/doi/abs/10.1086/303220. |
[17] |
T. W. Hwang and F. B. Wang,
Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 147-161.
doi: 10.3934/dcdsb.2013.18.147. |
[18] |
D. H. Jiang, H. Nie and J. H. Wu,
Crowding effects on coexistence solutions in the unstirred chemostat, Appl. Anal., 96 (2017), 1016-1046.
doi: 10.1080/00036811.2016.1171319. |
[19] |
P. De Leenheer, D. Angeli and E. D. Sontag, A feedback perspective for chemostat models
with crowding effects, Positive Systems, 167-174, Lect. Notes Control Inf. Sci., 294, Springer,
Berlin, 2003.
doi: 10.1007/978-3-540-44928-7_23. |
[20] |
P. De Leenheer, D. Angeli and E. D. Sontag,
Crowding effects promote coexistence in the chemostat, J. Math. Anal. Appl., 319 (2006), 48-60.
doi: 10.1016/j.jmaa.2006.02.036. |
[21] |
H. Lin and F. B. Wang,
On a reaction-diffusion system modeling the dengue transmission with nonlocal infections and crowding effects, Appl. Math. Comput., 248 (2014), 184-194.
doi: 10.1016/j.amc.2014.09.101. |
[22] |
R. Peng and X. Q. Zhao,
A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species, J. Math. Biol., 72 (2016), 755-791.
doi: 10.1007/s00285-015-0904-1. |
[23] |
M. H. Protter and H. F. Weinberger,
Maximum Principles in Differential Equations, 2nd edition, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[24] |
G. A. Riley, H. M. Stommel and D. F. Bumpus,
Quantitative ecology of the plankton of the western North Atlantic, Bull. Bingham Oceanogr. Coll., 12 (1949), 1-169.
|
[25] |
J. P. Shi and X. F. Wang,
On global bifurcation for quasilinear elliptic systems on bounded
domains, J. Differential Equations, 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009. |
[26] |
N. Shigesada and A. Okubo,
Analysis of the self-shading effect on algal vertical distribution in natural waters, J. Math. Biol., 12 (1981), 311-326.
doi: 10.1007/BF00276919. |
[27] |
M. X. Wang,
Nonlinear Elliptic Equations, Science Press, Beijing, 2010. |
[28] |
X. Zeng, J. Zhang and Y. Gu,
Uniqueness and stability of positive steady state solutions for a ratio-dependent predator-prey system with a crowding term in the prey equation, Nonlinear Anal. Real World Appl., 24 (2015), 163-174.
doi: 10.1016/j.nonrwa.2015.02.005. |
show all references
References:
[1] |
K. R. Arrigo, D. H. Robinson and D. L. Worthen, et al, Phytoplankton community structure
and the drawdown of nutrients and CO2 in the Southern Ocean, Science, 283 (1999), 365-367. http://science.sciencemag.org/content/283/5400/365. |
[2] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[3] |
R. Courant and D. Hilbert,
Methods of Mathematical Physics, Vol. Ⅰ, Interscience Publishers, New York, 1953. |
[4] |
E. N. Dancer,
On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.
doi: 10.1016/0022-247X(83)90098-7. |
[5] |
E. N. Dancer,
On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.
doi: 10.1090/S0002-9947-1984-0743741-4. |
[6] |
E. N. Dancer and Y. Du,
Positive solutions for a three-competition system with diffusion-Ⅰ.
General existence results, Nonlinear Anal., 24 (1995), 337-357.
doi: 10.1016/0362-546X(94)E0063-M. |
[7] |
G. R. DiTullio, J. M. Grebmeier, K. R. Arrigo, et al, Rapid and early export of Phaeocystis
antarctica blooms in the Ross Sea, Antarctica, Nature, 404 (2000), 595-598. https://www.nature.com/articles/35007061. |
[8] |
Y. Du and S. B. Hsu,
On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333.
doi: 10.1137/090775105. |
[9] |
Y. Du and L. Mei,
On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349.
doi: 10.1088/0951-7715/24/1/016. |
[10] |
Y. Du, S. B Hsu and Y. Lou,
Multiple steady-states in phytoplankton population induced by photoinhibition, J. Differential Equations, 258 (2015), 2408-2434.
doi: 10.1016/j.jde.2014.12.012. |
[11] |
U. Ebert, M. Arrayas, N. Temme, B. Sommeojer and J. Huisman, Critical condition for
phytoplankton blooms, Bull. Math. Biol., 63 (2001), 1095-1124. https://link.springer.com/article/10.1006/bulm.2001.0261. |
[12] |
P. G. Falkowski, R. T. Barber and V. Smetacek, Biogeochemical controls and feedbacks on
ocean primary production, Science, 281 (1998), 200-206. http://science.sciencemag.org/content/281/5374/200. |
[13] |
I. Ghoberg, S. Goldberg and M. A. Kaashoek,
Classes of Linear Operators,
Vol. I Birkhäuser-Basel, Basel, 1990.http://b-ok.xyz/book/461145/3b6523.
doi: 10.1007/978-3-0348-7509-7. |
[14] |
S. B. Hsu and Y. Lou,
Single phytoplankton species growth with light and advection in a
water column, SIAM J. Math. Anal., 70 (2010), 2942-2974.
doi: 10.1137/100782358. |
[15] |
J. Huisman, M. Arrayas, U. Ebert, et al, How do sinking phytoplankton species manage to
persist?, Amer. Nat., 159 (2002), 245-254. https://www.journals.uchicago.edu/doi/abs/10.1086/338511. |
[16] |
J. Huisman, P. van Oostveen and F. J. Weissing, Species dynamics in phytoplankton blooms:
incomplete mixing and competition for light, Amer. Nat., 154 (1999), 46-68.https://www.journals.uchicago.edu/doi/abs/10.1086/303220. |
[17] |
T. W. Hwang and F. B. Wang,
Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 147-161.
doi: 10.3934/dcdsb.2013.18.147. |
[18] |
D. H. Jiang, H. Nie and J. H. Wu,
Crowding effects on coexistence solutions in the unstirred chemostat, Appl. Anal., 96 (2017), 1016-1046.
doi: 10.1080/00036811.2016.1171319. |
[19] |
P. De Leenheer, D. Angeli and E. D. Sontag, A feedback perspective for chemostat models
with crowding effects, Positive Systems, 167-174, Lect. Notes Control Inf. Sci., 294, Springer,
Berlin, 2003.
doi: 10.1007/978-3-540-44928-7_23. |
[20] |
P. De Leenheer, D. Angeli and E. D. Sontag,
Crowding effects promote coexistence in the chemostat, J. Math. Anal. Appl., 319 (2006), 48-60.
doi: 10.1016/j.jmaa.2006.02.036. |
[21] |
H. Lin and F. B. Wang,
On a reaction-diffusion system modeling the dengue transmission with nonlocal infections and crowding effects, Appl. Math. Comput., 248 (2014), 184-194.
doi: 10.1016/j.amc.2014.09.101. |
[22] |
R. Peng and X. Q. Zhao,
A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species, J. Math. Biol., 72 (2016), 755-791.
doi: 10.1007/s00285-015-0904-1. |
[23] |
M. H. Protter and H. F. Weinberger,
Maximum Principles in Differential Equations, 2nd edition, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[24] |
G. A. Riley, H. M. Stommel and D. F. Bumpus,
Quantitative ecology of the plankton of the western North Atlantic, Bull. Bingham Oceanogr. Coll., 12 (1949), 1-169.
|
[25] |
J. P. Shi and X. F. Wang,
On global bifurcation for quasilinear elliptic systems on bounded
domains, J. Differential Equations, 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009. |
[26] |
N. Shigesada and A. Okubo,
Analysis of the self-shading effect on algal vertical distribution in natural waters, J. Math. Biol., 12 (1981), 311-326.
doi: 10.1007/BF00276919. |
[27] |
M. X. Wang,
Nonlinear Elliptic Equations, Science Press, Beijing, 2010. |
[28] |
X. Zeng, J. Zhang and Y. Gu,
Uniqueness and stability of positive steady state solutions for a ratio-dependent predator-prey system with a crowding term in the prey equation, Nonlinear Anal. Real World Appl., 24 (2015), 163-174.
doi: 10.1016/j.nonrwa.2015.02.005. |


[1] |
Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217 |
[2] |
Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989 |
[3] |
Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841 |
[4] |
Danhua Jiang, Zhi-Cheng Wang, Liang Zhang. A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4557-4578. doi: 10.3934/dcdsb.2018176 |
[5] |
Xu Rao, Guohong Zhang, Xiaoli Wang. A reaction-diffusion-advection SIS epidemic model with linear external source and open advective environments. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022014 |
[6] |
Chengxia Lei, Xinhui Zhou. Concentration phenomenon of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with spontaneous infection. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3077-3100. doi: 10.3934/dcdsb.2021174 |
[7] |
Chris Cosner. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1701-1745. doi: 10.3934/dcds.2014.34.1701 |
[8] |
Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105 |
[9] |
Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208 |
[10] |
Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure and Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733 |
[11] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116 |
[12] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017 |
[13] |
Linfeng Mei, Xiaoyan Zhang. On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 221-243. doi: 10.3934/dcdsb.2012.17.221 |
[14] |
Baifeng Zhang, Guohong Zhang, Xiaoli Wang. Threshold dynamics of a reaction-diffusion-advection Leslie-Gower predator-prey system. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021260 |
[15] |
Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 837-861. doi: 10.3934/dcdsb.2021067 |
[16] |
Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114 |
[17] |
Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385 |
[18] |
Meng Zhao. The longtime behavior of the model with nonlocal diffusion and free boundaries in online social networks. Electronic Research Archive, 2020, 28 (3) : 1143-1160. doi: 10.3934/era.2020063 |
[19] |
Messoud A. Efendiev, Sergey Zelik, Hermann J. Eberl. Existence and longtime behavior of a biofilm model. Communications on Pure and Applied Analysis, 2009, 8 (2) : 509-531. doi: 10.3934/cpaa.2009.8.509 |
[20] |
M. Grasselli, Vittorino Pata. Longtime behavior of a homogenized model in viscoelastodynamics. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 339-358. doi: 10.3934/dcds.1998.4.339 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]