January  2019, 39(1): 75-113. doi: 10.3934/dcds.2019004

Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$

1. 

Departament de Matemàtiques, Facultat de Ciències Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

2. 

Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, Ⅷ-Región, Chile

3. 

Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, Ⅷ-región, Chile

* Corresponding author: Claudio Vidal

Received  August 2017 Revised  May 2018 Published  October 2018

We study the phase portraits on the Poincaré disc for all the linear type centers of polynomial Hamiltonian systems of degree $5$ with Hamiltonian function $H(x,y) = H_1(x)+H_2(y)$, where $H_1(x) = \frac{1}{2} x^2+\frac{a_3}{3}x^3+ \frac{a_4}{4}x^4+ \frac{a_5}{5}x^5$ and $H_2(y) = \frac{1}{2} y^2+ \frac{b_3}{3}y^3+ \frac{b_4}{4}y^4+ \frac{b_5}{5}y^5$ as function of the six real parameters $a_3, a_4, a_5, b_3, b_4$ and $b_5$ with $a_5 b_5≠ 0$. We characterize the type and multiplicity of the roots of the polynomials $\hat{p}(y) = 1+b_3y + b_4 y^2+b_5y^3$ and $\hat{q}(x) = 1+a_3x+a_4x^2+a_5x^3$ and we prove that the finite equilibria are saddles, centers, cusps or the union of two hyperbolic sectors. For the infinite equilibria we found that there only exist two nodes on the Poincaré disc with opposite stability. We also characterize the separatrices of the equilibria and analyze the possible connections between them. As a complement we use the energy level to complete the global phase portrait.

Citation: Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004
References:
[1]

A. A. Andronov, A. A. Vitt and S. E. Khaikin, Theory of Oscillators, Dover Publications Inc., New York, 1987. Translated form the Russian by F. Immirzi, Reprint of the 1966 translation.  Google Scholar

[2]

V. I. Arnold and Y. S. Ilyashenko, Dynamical Systems I, Ordinary Differential Equation, Encyclopaedia of Mathematical Sciences, Vols 1-2, Springer-Verlag, Heidelberg, 1988. Google Scholar

[3]

J. C. Artés and J. Llibre, Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994), 80-95.  doi: 10.1006/jdeq.1994.1004.  Google Scholar

[4]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb., 30 (1952), 181-196; Mer. Math. Soc. Transl., 100 (1954), 1-19.  Google Scholar

[5]

J. Chavarriga and J. Giné, Integrability of a linear center perturbed by a fourth degree homogeneous polynomial, Publ. Mat., 40 (1996), 21-39.  doi: 10.5565/PUBLMAT_40196_03.  Google Scholar

[6]

J. Chavarriga and J. Giné, Integrability of a linear center perturbed by a fifth degree homogeneous polynomial, Publ. Mat., 41 (1997), 335-356.  doi: 10.5565/PUBLMAT_41297_02.  Google Scholar

[7]

I. ColakJ. Llibre and C. Valls, Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, Adv. Math., 259 (2014), 655-687.  doi: 10.1016/j.aim.2014.04.002.  Google Scholar

[8]

I. ColakJ. Llibre and C. Valls, Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 257 (2014), 1623-1661.  doi: 10.1016/j.jde.2014.05.024.  Google Scholar

[9]

I. ColakJ. Llibre and C. Valls, Bifurcations diagrams for Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 258 (2015), 846-879.  doi: 10.1016/j.jde.2014.10.006.  Google Scholar

[10]

I. ColakJ. Llibre and C. Valls, Bifurcations diagrams for nilpotent centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 262 (2017), 5518-5533.  doi: 10.1016/j.jde.2017.02.001.  Google Scholar

[11]

H. Dulac, Détermination et integration dâ une certaine classe dâ équations différentielle ayant par point singulier un centre, Bull. Sci. Math. Sér.(2), 32 (1908), 230-252.   Google Scholar

[12]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, 2006.  Google Scholar

[13]

J. García-SaldanaA. Gasull and H. Giacomini, Bifurcation values for a family of planar vector fields of degree five, Discrete Contin. Dyn. Syst., 35 (2015), 669-701.  doi: 10.3934/dcds.2015.35.669.  Google Scholar

[14]

A. GarijoA. Gasull and X. Jarque, Local and global phase portrait of equation $ \dot{z} = f(z)$, Discrete Contin. Dyn. Syst., 17 (2007), 309-329.  doi: 10.3934/dcds.2007.17.309.  Google Scholar

[15]

H. Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, Mass, 1951.  Google Scholar

[16]

A. Guillamon and C. Pantazi, Phase portraits of separable Hamiltonian systems, Nonl. Analysis, 74 (2011), 4012-4035.  doi: 10.1016/j.na.2011.03.030.  Google Scholar

[17]

W. Kapteyn, On the midpoints of integral curves of differential equations of the first Degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk. Konikl., Nederland, (1911), 1446-1457 (in Dutch). Google Scholar

[18]

W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk, 20 (1912), 1354-1365; Nederl. Akad. Wetensch. Verslag Afd. Natuurk, 21 (1913), 27-33 (in Dutch). Google Scholar

[19]

J. H. KimS. W. LeeH. Massen and H. W. Lee, Relativistic oscillator of constant period, Phys. Rev. A, 53 (1996), 2991-2997.   Google Scholar

[20]

K. Lan and Ch. Zhu, Phase portraits of predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst., 32 (2012), 901-933.  doi: 10.3934/dcds.2012.32.901.  Google Scholar

[21]

K. E. Malkin, Criteria for the center for a certain differential equation, Vols. Mat. Sb. Vyp., 2 (1964), 87-91 (in Russian).  Google Scholar

[22]

L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math Soc., 76 (1954), 127-148.  doi: 10.1090/S0002-9947-1954-0060657-0.  Google Scholar

[23]

Y. P. Martínez and C. Vidal, Classification of global phase portraits and bifurcation diagrams of Hamiltonian systems with rational potential, J. Differential Equations, 261 (2016), 5923-5948.  doi: 10.1016/j.jde.2016.08.024.  Google Scholar

[24]

D. A. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc., 48 (1975), 73-81.  doi: 10.1090/S0002-9939-1975-0356138-6.  Google Scholar

[25]

M. M. Peixoto, Dynamical Systems. Proccedings of a Symposium held at the University of Bahia, Acad. Press, New York, (1973), 389-420. Google Scholar

[26]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; Oeuvres de Henri Poincaré, vol. Ⅰ, Gauthier-Villars, Paris, 1951, 3-84. Google Scholar

[27]

H. Stommel, Trajectories of small bodies sinking slowly through convection cells, J. Mar. Res., 8 (1949), 24-29.   Google Scholar

[28]

N. I. Vulpe, Affine-invariant conditions for the topological discrimination of quadratic systems with a center, Differential Equations, 19 (1983), 273-280.   Google Scholar

[29]

N. I. Vulpe and K. S. Sibirskii, Centro-affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities, Dokl. Akad. Nauk. SSSR, 301 (1988), 1297-1301 (in Russian); translation in: Soviet Math. Dokl., 38 (1989), 198-201.  Google Scholar

show all references

References:
[1]

A. A. Andronov, A. A. Vitt and S. E. Khaikin, Theory of Oscillators, Dover Publications Inc., New York, 1987. Translated form the Russian by F. Immirzi, Reprint of the 1966 translation.  Google Scholar

[2]

V. I. Arnold and Y. S. Ilyashenko, Dynamical Systems I, Ordinary Differential Equation, Encyclopaedia of Mathematical Sciences, Vols 1-2, Springer-Verlag, Heidelberg, 1988. Google Scholar

[3]

J. C. Artés and J. Llibre, Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994), 80-95.  doi: 10.1006/jdeq.1994.1004.  Google Scholar

[4]

N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb., 30 (1952), 181-196; Mer. Math. Soc. Transl., 100 (1954), 1-19.  Google Scholar

[5]

J. Chavarriga and J. Giné, Integrability of a linear center perturbed by a fourth degree homogeneous polynomial, Publ. Mat., 40 (1996), 21-39.  doi: 10.5565/PUBLMAT_40196_03.  Google Scholar

[6]

J. Chavarriga and J. Giné, Integrability of a linear center perturbed by a fifth degree homogeneous polynomial, Publ. Mat., 41 (1997), 335-356.  doi: 10.5565/PUBLMAT_41297_02.  Google Scholar

[7]

I. ColakJ. Llibre and C. Valls, Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, Adv. Math., 259 (2014), 655-687.  doi: 10.1016/j.aim.2014.04.002.  Google Scholar

[8]

I. ColakJ. Llibre and C. Valls, Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 257 (2014), 1623-1661.  doi: 10.1016/j.jde.2014.05.024.  Google Scholar

[9]

I. ColakJ. Llibre and C. Valls, Bifurcations diagrams for Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 258 (2015), 846-879.  doi: 10.1016/j.jde.2014.10.006.  Google Scholar

[10]

I. ColakJ. Llibre and C. Valls, Bifurcations diagrams for nilpotent centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 262 (2017), 5518-5533.  doi: 10.1016/j.jde.2017.02.001.  Google Scholar

[11]

H. Dulac, Détermination et integration dâ une certaine classe dâ équations différentielle ayant par point singulier un centre, Bull. Sci. Math. Sér.(2), 32 (1908), 230-252.   Google Scholar

[12]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, 2006.  Google Scholar

[13]

J. García-SaldanaA. Gasull and H. Giacomini, Bifurcation values for a family of planar vector fields of degree five, Discrete Contin. Dyn. Syst., 35 (2015), 669-701.  doi: 10.3934/dcds.2015.35.669.  Google Scholar

[14]

A. GarijoA. Gasull and X. Jarque, Local and global phase portrait of equation $ \dot{z} = f(z)$, Discrete Contin. Dyn. Syst., 17 (2007), 309-329.  doi: 10.3934/dcds.2007.17.309.  Google Scholar

[15]

H. Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, Mass, 1951.  Google Scholar

[16]

A. Guillamon and C. Pantazi, Phase portraits of separable Hamiltonian systems, Nonl. Analysis, 74 (2011), 4012-4035.  doi: 10.1016/j.na.2011.03.030.  Google Scholar

[17]

W. Kapteyn, On the midpoints of integral curves of differential equations of the first Degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk. Konikl., Nederland, (1911), 1446-1457 (in Dutch). Google Scholar

[18]

W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk, 20 (1912), 1354-1365; Nederl. Akad. Wetensch. Verslag Afd. Natuurk, 21 (1913), 27-33 (in Dutch). Google Scholar

[19]

J. H. KimS. W. LeeH. Massen and H. W. Lee, Relativistic oscillator of constant period, Phys. Rev. A, 53 (1996), 2991-2997.   Google Scholar

[20]

K. Lan and Ch. Zhu, Phase portraits of predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst., 32 (2012), 901-933.  doi: 10.3934/dcds.2012.32.901.  Google Scholar

[21]

K. E. Malkin, Criteria for the center for a certain differential equation, Vols. Mat. Sb. Vyp., 2 (1964), 87-91 (in Russian).  Google Scholar

[22]

L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math Soc., 76 (1954), 127-148.  doi: 10.1090/S0002-9947-1954-0060657-0.  Google Scholar

[23]

Y. P. Martínez and C. Vidal, Classification of global phase portraits and bifurcation diagrams of Hamiltonian systems with rational potential, J. Differential Equations, 261 (2016), 5923-5948.  doi: 10.1016/j.jde.2016.08.024.  Google Scholar

[24]

D. A. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc., 48 (1975), 73-81.  doi: 10.1090/S0002-9939-1975-0356138-6.  Google Scholar

[25]

M. M. Peixoto, Dynamical Systems. Proccedings of a Symposium held at the University of Bahia, Acad. Press, New York, (1973), 389-420. Google Scholar

[26]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; Oeuvres de Henri Poincaré, vol. Ⅰ, Gauthier-Villars, Paris, 1951, 3-84. Google Scholar

[27]

H. Stommel, Trajectories of small bodies sinking slowly through convection cells, J. Mar. Res., 8 (1949), 24-29.   Google Scholar

[28]

N. I. Vulpe, Affine-invariant conditions for the topological discrimination of quadratic systems with a center, Differential Equations, 19 (1983), 273-280.   Google Scholar

[29]

N. I. Vulpe and K. S. Sibirskii, Centro-affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities, Dokl. Akad. Nauk. SSSR, 301 (1988), 1297-1301 (in Russian); translation in: Soviet Math. Dokl., 38 (1989), 198-201.  Google Scholar

Figure 11.  Phase portraits for the systems associated to the Hamiltonian (5) when the roots of $\hat{p}(y)$ are $r\in \mathbb{R}$ and $a\pm ib$, and the roots of $\hat{q}(x)$ are $\rho$ and $\alpha\pm i\beta$. The separatrices are in bold. (a) $h_2<h_3$. (b) $h_2 = h_3$. (c) $h_2>h_3$
Figure 17.  Global phase portraits for the system (3) in the case Ⅰ-ⅱ for $r>0$ and $0<\sigma<\rho$. (a) $h_2 = h_4$ and $h_3 = h_5$. (b) $h_2 = h_4$ and $h_3<h_5$. (c) $h_2 = h_4$ and $h_5<h_3$. (d) $h_2<h_3<h_4<h_5$. (e) $h_3 = h_4$ and $h_2<h_5$. (f) $h_2<h_4<h_3<h_5$. (g) $h_3 = h_5$ and $h_2<h_4$. (h) $h_2<h_4<h_5<h_3$. (i) $h_4<h_2<h_3<h_5$. (j) $h_3 = h_5$ and $h_2>h_4$. (k) $h_4<h_2<h_5<h_3$
Figure 16.  Global phase portraits for the system (3) in the case Ⅰ-ⅱ for $r>0$ and $0<\rho<\sigma$. (a) $h_2<h_3 = h_4 = h_5$. (b) $h_2 = h_4<h_3 = h_5$. (c) $h_2 = h_4<h_5<h_3$. (d) $h_2<h_4 = h_5<h_3$. (e) $h_2<h_3<h_4<h_5$. (f) $h_2<h_3<h_4 = h_5$. (g) $h_2<h_3<h_5<h_4$. (h) $h_2<h_3 = h_4<h_5$. (i) $h_2<h_4<h_3<h_5$. (j) $h_2<h_4<h_3 = h_5$. (k) $h_2<h_4<h_5<h_3$. (l) $h_2<h_3 = h_5<h_4$. (m) $h_4<h_2<h_3<h_5$. (n) $h_4<h_2<h_3 = h_5$. (o) $h_4<h_2<h_5<h_3$. (p) $h_2<h_5<h_3<h_4$. (q) $h_2<h_5<h_3 = h_4$. (r) $h_2<h_5<h_4<h_3$
Figure 22.  Global Phase portraits for the system (3) in the case Ⅰ-ⅳ. Here consider $r>0$, $\rho<0<\sigma<\tau$. When four (a) or three saddle are in the energy level (a)-(i), $h_5 = h_8$ (j)-(o). (a) $h_2 = h_3 = h_5 = h_8$. (b) $h_8<h_2 = h_3 = h_5$. (c) $h_2 = h_3 = h_5<h_8$. (d) $h_5<h_2 = h_3 = h_8$. (e) $h_2 = h_3 = h_8<h_5$. (f) $h_3<h_2 = h_5 = h_8$. (g) $h_2 = h_5 = h_8<h_3$. (h) $h_2<h_3 = h_5 = h_8$. (i) $h_3 = h_5 = h_8<h_8$. (j) $h_5 = h_8<h_2<h_3$. (k) $h_2<h_5 = h_8<h_3$. (l) $h_2<h_3<h_5 = h_8$. (m) $h_5 = h_8<h_3<h_2$. (n) $h_3<h_5 = h_8<h_2$. (o) $h_3<h_2<h_5 = h_8$
Figure 23.  Global Phase portraits for the system (3) in case Ⅰ-ⅳ. Here consider $r>0$, $\rho<0<\sigma<\tau$ when two pairs of saddle are in the same energy level (a)-(f), $r>0$, $\rho<0<\sigma<\tau$ when $h_2 = h_3$ (g)-(l), and $r>0$, $\rho<0<\sigma<\tau$ when $h_2 = h_5$ (m)-(r). (a) $h_2 = h_3<h_5 = h_8$. (b) $h_2 = h_3>h_5 = h_8$. (c) $h_2 = h_5<h_3 = h_8$. (d) $h_2 = h_5>h_3 = h_8$. (e) $h_2 = h_8<h_3 = h_5$. (f) $h_2 = h_8>h_3 = h_5$. (g) $h_2 = h_3<h_5<h_8$. (h) $h_5<h_2 = h_3<h_8$. (i) $h_5<h_8<h_2 = h_3$. (j) $h_2 = h_3<h_8<h_5$. (k) $h_8<h_2 = h_3<h_5$. (l) $h_8<h_5<h_2 = h_3$. (m) $h_2 = h_5<h_3<h_8$. (n) $h_3<h_2 = h_5<h_8$. (o) $h_3<h_8<h_2 = h_5$. (p) $h_2 = h_5<h_8<h_3$. (q) $h_8<h_2 = h_5<h_3$. (r) $h_8<h_3<h_2 = h_5$
Figure 24.  Global Phase portraits for the system (3) in the case Ⅰ-ⅳ. Here consider $r>0$, $\rho<0<\sigma<\tau$ when $h_2 = h_8$ (a)-(f), $h_3 = h_5$ (g)-(l) and $h_3 = h_8$ (m)-(r). (a) $h_2 = h_8<h_3<h_5$. (b) $h_3<h_2 = h_8<h_5$. (c) $h_3<h_5<h_2 = h_8$. (d) $h_2 = h_8<h_5<h_3$. (e) $h_5<h_2 = h_8<h_3$. (f) $h_5<h_3<h_2 = h_8$. (g) $h_3 = h_5<h_2<h_8$. (h) $h_2<h_3 = h_5<h_8$. (i) $h_2<h_8<h_3 = h_5$. (j) $h_3 = h_5<h_8<h_2$. (k) $h_8<h_3 = h_5<h_2$. (l) $h_8<h_2<h_3 = h_5$. (m) $h_3 = h_8<h_2<h_5$. (n) $h_2<h_3 = h_8<h_5$. (o) $h_2<h_5<h_3 = h_8$. (p) $h_3 = h_8<h_5<h_2$. (q) $h_5<h_3 = h_8<h_2$. (r) $h_5<h_2<h_3 = h_8$
Figure 25.  Global Phase portraits for the system (3) in the case Ⅰ-ⅳ. Here consider $r>0$, $\rho<0<\sigma<\tau$ when $h_2<h_3<h_5$ (a)-(d), $h_2<h_5<h_3$ (e)-(h), $h_3<h_2<h_5$ (i)-(l), and $h_3<h_5<h_2$ (m)-(p). (a) $h_2<h_3<h_5<h_8$. (b) $h_2<h_3<h_8<h_5$. (c) $h_2<h_8<h_3<h_5$. (d) $h_8<h_3<h_3<h_5$. (e) $h_2<h_5<h_3<h_8$. (f) $h_2<h_5<h_8<h_3$. (g) $h_2<h_8<h_5<h_3$. (h) $h_8<h_2<h_5<h_3$. (i) $h_3<h_2<h_5<h_8$. (j) $h_3<h_2<h_8<h_5$. (k) $h_3<h_8<h_2<h_5$. (l) $h_8<h_3<h_2<h_5$. (m) $h_3<h_5<h_2<h_8$. (n) $h_3<h_5<h_8<h_2$. (o) $h_3<h_8<h_5<h_2$. (p) $h_8<h_3<h_5<h_2$
Figure 26.  Global phase portraits for the system (3) in the case Ⅰ-ⅳ. Here consider $r>0$, $\rho<0<\sigma<\tau$ when all the saddle are in different energy level and its satisfy $h_5<h_2<h_3$ (a)-(d), $h_5<h_3<h_2$ (e)-(h). (a) $h_5<h_2<h_3<h_8$. (b) $h_5<h_2<h_8<h_3$. (c) $h_5<h_8<h_2<h_3$. (d) $h_8<h_5<h_2<h_3$. (e) $h_5<h_3<h_2<h_8$. (f) $h_5<h_3<h_8<h_2$. (g) $h_5<h_8<h_3<h_2$. (h) $h_8<h_5<h_3<h_2$
Figure 29.  Local phase portraits at the equilibria of system (3) in the case Ⅱ-ⅱ. (a) $0<r<s$ and $0<\rho<\sigma$. (b) $r<0<s$ and $0<\rho<\sigma$. (c) $0<s<r$ and $\sigma<0<\rho$. (d) $r<0<s$ and $\sigma<0<\rho$. (e) $0<s<r$ and $0<\sigma<\rho$
Figure 30.  Local phase portraits at the equilibria of system (3) in the case Ⅱ-ⅳ. (a) if $0<r<s$. (b) if $0<s<r$
Figure 31.  Local phase portraits for system (3) in the case Ⅳ-ⅳ if $0<r<s<t$ and $0<\rho<\sigma<\tau$
Figure 2.  Local phase portrait at the origin of system (9). (a) $\tilde{w}>0$ and $\kappa>0$. (b) $\tilde{w}>0$ and $\kappa<0$. (c) $\tilde{w}<0$ and $\kappa>0$. (d) $\tilde{w}<0$ and $\kappa<0$
Figure 1.  Phase portrait in a neighborhood of the $w$-axis of system (10). (a) $\tilde{w}>0$ and $\kappa>0$. (b) $\tilde{w}>0$ and $\kappa<0$. (c) $\tilde{w}<0$ and $\kappa>0$. (d) $\tilde{w}<0$ and $\kappa<0$
Figure 3.  Blow-up at the origin of system (11). (a) Local phase portrait at the origin of the system (12). (b) Local phase portrait at the origin of the system (11)
Figure 4.  Assume $(\alpha_3-\tilde{y})/(\alpha_3 \tilde{y})>0$. (a) Local phase portrait in a neighbourhood at the $w$-axis of system (14). (b) Local phase portrait at the origin of system (13)
Figure 5.  Assume $(\alpha_3-\tilde{y})/(\alpha_3 \tilde{y})<0$. (a) Local phase portrait in a neighbourhood at the $w$-axis of system (14). (b) Local phase portrait at the origin of system (13)
Figure 6.  Blow-up of the origin of system (15). (a) Local phase portrait at in a neighborhood of the $w$-axis of system (16). (b) Local phase portrait at the origin of system (15)
Figure 7.  Local phase portrait of the equilibria of for the system (3) in the case Ⅰ-ⅰ
Figure 8.  Flow of system (3) over the straight lines $x = 0$, $x = \rho$, $y = 0$ and $y = r$ in the case Ⅰ-ⅰ
Figure 9.  The graphic of the auxiliary function $\nu_2(y)$
Figure 10.  The graphic of the auxiliary function $\mu_2(x)$. (a) $h_2<h_3$. (b) $h_2>h_3$
Figure 12.  Local phase portraits of the cusp $e_2 = (\sigma,0)$ and $e_5 = (\sigma,r)$ of system (20) according sign of $\sigma-\rho$ (assuming $\sigma,\rho>0$)
Figure 13.  Local phase portraits at the equilibria of system (3) in the case Ⅰ-ⅱ for $r>0$. (a) $0<\rho <\sigma$. (b) $0<\sigma <\rho$
Figure 14.  Flow of the vector field (3) over the straight lines $x = 0$, $x = \rho$, $x = \sigma$, $y = 0$ and $y = r$ in the case Ⅰ-ⅱ. (a) $0<\rho< \sigma$. (b) $0<\sigma<\rho$
Figure 15.  Phase portraits of separatrices in system (3) in the case Ⅰ-ⅱ with $r>0$. (a) $0<\rho< \sigma$. (b) $0<\sigma<\rho$
Figure 18.  Local phase portrait at the equilibrium $e_6$ of system (21) after translate it to the origin. (a) $(r-s)/(rs)>0$. (b) $(r-s)/(rs)<0$
Figure 19.  Local phase portraits at the equilibria of system 21 in the case Ⅱ-ⅲ with $\rho>0$. (a) if $0<r<s$. (b) if $0<s<r$
Figure 20.  Local phase portraits at the equilibria of system (3) in the case Ⅰ-ⅳ. (a) $r>0$ and $0<\rho<\sigma<\tau$. (b) $r>0$ and $\rho<0<\sigma<\tau$
Figure 21.  The vector field (22) over the straights lines $x = 0$, $x = \rho$, $x = \sigma$, $x = \sigma$, $y = 0$ and $y = r$ if $r>0$ and $\rho<0<\sigma<\tau$. (a) Vector field. (b) General analysis of the separatrices
Figure 27.  Local phase portraits for the nilpotent equilibria $e_3$ and $e_6$ in the case Ⅰ-ⅳ for $r>0$ shifted to the origin. (a) $e_3$ when $-(r-s)/(rs)>0$. (b) $e_3$ when $-(r-s)/(rs)<0$. (c) $e_6$ when $(r-s)/(rs)>0$. (d) $e_6$ when $(r-s)/(rs)<0$
Figure 28.  Local phase portrait at the equilibrium $e_9 = (\sigma,s)$ of system (24) after translation to the origin. (a) $(r-s)/(rs)>0$ and $(\rho-\sigma)/(\rho\sigma)>0$. (b) $(r-s)/(rs)>0$ and $(\rho-\sigma)/(\rho\sigma)<0$. (c) $(r-s)/(rs)<0$ and $(\rho-\sigma)/(\rho\sigma)>0$. (d) $(r-s)/(rs)<0$ and $(\rho-\sigma)/(\rho\sigma)<0$
[1]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[2]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[5]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[6]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[7]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[8]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[9]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[10]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[11]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[12]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[13]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[14]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[15]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[18]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[19]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[20]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (150)
  • HTML views (173)
  • Cited by (1)

[Back to Top]