• Previous Article
    The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas
  • DCDS Home
  • This Issue
  • Next Article
    Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$
January  2019, 39(1): 115-130. doi: 10.3934/dcds.2019005

Core entropy of polynomials with a critical point of maximal order

División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa Km 1, Cunduacán Tabasco, México

* Corresponding author

Received  September 2017 Revised  July 2018 Published  October 2018

Fund Project: The first author is supported by CONACY CB-2012/181247 and 488419/278289

This paper discusses some properties of the topological entropy of the systems generated by polynomials of degree $ d$ with two critical points. A partial order in the parameter space is defined. The monotonicity of the topological entropy of postcritically finite polynomials of degree $ d$ acting on Hubbard tree is generalized.

Citation: Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005
References:
[1]

L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, 1513. Springer-Verlag, Berlin, 1992. doi: 10.1007/BFb0084762.  Google Scholar

[2]

L. Carleson and T. W. Gamelin, Complex Dynamics, (English summary), Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4364-9.  Google Scholar

[3]

A. Douady, Algorithms for computing angles in the Mandelbort set, Chaotic dynamics and fractals (Atlanta, Ga. 1985), Notes Rep. Math. Sci. Engrg. 2, Academic Press, Orlando, FL, (1986), 155-168.  Google Scholar

[4]

A. Douady, Topological entropy of unimodal maps: Monotonicity for quadratic polynomials. Real and Complex Dynamical Systems (Hiller$ \oslash $d, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 464, Kluwer Acad. Publ., Dordrecht, (1995), 65-87.  Google Scholar

[5]

A. Douady and J. H. Hubbard, Étude Dynamique des Polynômes Complexes, Publications Mathématiques d'Orsay [Mathematical Publications of Orsay], 84-2. Université de Paris-Sud, Département de Mathématiques, Orsay, 1984.  Google Scholar

[6]

A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup., 18 (1985), 287-343.  doi: 10.24033/asens.1491.  Google Scholar

[7]

A. Kaffl, Trees and Kneading Sequences for Unicritical and Cubic Polynomials, Ph.D. thesis, International University Bremen, 2007. Google Scholar

[8]

T. Li, A monotonicity conjecture for the entropy of Hubbard trees, Thesis (Ph.D.)-State University of New York at Stony Brook. ProQuest LLC, Ann Arbor, MI, 2007.  Google Scholar

[9]

M. Lyubich, Dynamics of quadratic polynomials Ⅰ-Ⅱ, Acta Math, 178 (1997), 185-297.  doi: 10.1007/BF02392694.  Google Scholar

[10]

J. Milnor, Cubic polynomial maps with periodic critical orbit. Ⅰ. Complex dynamics, A K Peters, Wellesley, MA, (2009), 333-411. doi: 10.1201/b10617-13.  Google Scholar

[11]

J. Milnor, Periodic orbits, external rays and the mandelbrot set, Geometrie Complexe et Systemes Dynamiques, Astérisque, 261 (2000), 277-333 [Stony Brook IMS Preprint 1999 3].  Google Scholar

[12]

J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical systems, (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, (1988), 465-563. doi: 10.1007/BFb0082847.  Google Scholar

[13]

J. Milnor and Ch. Tresser, On entropy and monotonicity for real cubic maps, With an appendix by Adrien Douady and Pierrette Sentenac, Comm. Math. Phys., 209 (2000), 123-178.  doi: 10.1007/s002200050018.  Google Scholar

[14]

A. Poirier, Hubbard trees, Fundamenta Mathematicae, 208 (2010), 193-248.  doi: 10.4064/fm208-3-1.  Google Scholar

[15]

A. Radulescu, The connected isentropes conjecture in a space of quartic polynomials, Discrete Contin. Dyn. Syst., 19 (2007), 139-175.  doi: 10.3934/dcds.2007.19.139.  Google Scholar

[16]

P. Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order, (English, French summary) Ann. Sci. École Norm. Sup., 40 (2007), 901-949. doi: 10.1016/j.ansens.2007.10.001.  Google Scholar

[17]

W. P. Thurston, On geometry and dynamics of iterated Rational Maps. Edited by Dierk Schleicher and Nikita Selinger and with an appendix by Schleicher. Complex Dynamics, A K Peters, Wellesley, MA, (2009), 3-137. doi: 10.1201/b10617-3.  Google Scholar

[18]

G. Tiozzo, Entropy, dimension and combinatorial moduli for one-dimensional dynamical systems, Thesis (Ph.D.)-Harvard University. ProQuest LLC, Ann Arbor, MI, 2013.  Google Scholar

[19]

G. Tiozzo, Continuity of core entropy of quadratic polynomials, Invent. Math., 203 (2016), 891-921.  doi: 10.1007/s00222-015-0605-9.  Google Scholar

[20]

S. Zakeri, Biaccessibility in quadratic Julia Sets, Ergodic Theory Dynam. Systems, 20 (2000), 1859-1883.  doi: 10.1017/S0143385700001024.  Google Scholar

show all references

References:
[1]

L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, 1513. Springer-Verlag, Berlin, 1992. doi: 10.1007/BFb0084762.  Google Scholar

[2]

L. Carleson and T. W. Gamelin, Complex Dynamics, (English summary), Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4364-9.  Google Scholar

[3]

A. Douady, Algorithms for computing angles in the Mandelbort set, Chaotic dynamics and fractals (Atlanta, Ga. 1985), Notes Rep. Math. Sci. Engrg. 2, Academic Press, Orlando, FL, (1986), 155-168.  Google Scholar

[4]

A. Douady, Topological entropy of unimodal maps: Monotonicity for quadratic polynomials. Real and Complex Dynamical Systems (Hiller$ \oslash $d, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 464, Kluwer Acad. Publ., Dordrecht, (1995), 65-87.  Google Scholar

[5]

A. Douady and J. H. Hubbard, Étude Dynamique des Polynômes Complexes, Publications Mathématiques d'Orsay [Mathematical Publications of Orsay], 84-2. Université de Paris-Sud, Département de Mathématiques, Orsay, 1984.  Google Scholar

[6]

A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup., 18 (1985), 287-343.  doi: 10.24033/asens.1491.  Google Scholar

[7]

A. Kaffl, Trees and Kneading Sequences for Unicritical and Cubic Polynomials, Ph.D. thesis, International University Bremen, 2007. Google Scholar

[8]

T. Li, A monotonicity conjecture for the entropy of Hubbard trees, Thesis (Ph.D.)-State University of New York at Stony Brook. ProQuest LLC, Ann Arbor, MI, 2007.  Google Scholar

[9]

M. Lyubich, Dynamics of quadratic polynomials Ⅰ-Ⅱ, Acta Math, 178 (1997), 185-297.  doi: 10.1007/BF02392694.  Google Scholar

[10]

J. Milnor, Cubic polynomial maps with periodic critical orbit. Ⅰ. Complex dynamics, A K Peters, Wellesley, MA, (2009), 333-411. doi: 10.1201/b10617-13.  Google Scholar

[11]

J. Milnor, Periodic orbits, external rays and the mandelbrot set, Geometrie Complexe et Systemes Dynamiques, Astérisque, 261 (2000), 277-333 [Stony Brook IMS Preprint 1999 3].  Google Scholar

[12]

J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical systems, (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, (1988), 465-563. doi: 10.1007/BFb0082847.  Google Scholar

[13]

J. Milnor and Ch. Tresser, On entropy and monotonicity for real cubic maps, With an appendix by Adrien Douady and Pierrette Sentenac, Comm. Math. Phys., 209 (2000), 123-178.  doi: 10.1007/s002200050018.  Google Scholar

[14]

A. Poirier, Hubbard trees, Fundamenta Mathematicae, 208 (2010), 193-248.  doi: 10.4064/fm208-3-1.  Google Scholar

[15]

A. Radulescu, The connected isentropes conjecture in a space of quartic polynomials, Discrete Contin. Dyn. Syst., 19 (2007), 139-175.  doi: 10.3934/dcds.2007.19.139.  Google Scholar

[16]

P. Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order, (English, French summary) Ann. Sci. École Norm. Sup., 40 (2007), 901-949. doi: 10.1016/j.ansens.2007.10.001.  Google Scholar

[17]

W. P. Thurston, On geometry and dynamics of iterated Rational Maps. Edited by Dierk Schleicher and Nikita Selinger and with an appendix by Schleicher. Complex Dynamics, A K Peters, Wellesley, MA, (2009), 3-137. doi: 10.1201/b10617-3.  Google Scholar

[18]

G. Tiozzo, Entropy, dimension and combinatorial moduli for one-dimensional dynamical systems, Thesis (Ph.D.)-Harvard University. ProQuest LLC, Ann Arbor, MI, 2013.  Google Scholar

[19]

G. Tiozzo, Continuity of core entropy of quadratic polynomials, Invent. Math., 203 (2016), 891-921.  doi: 10.1007/s00222-015-0605-9.  Google Scholar

[20]

S. Zakeri, Biaccessibility in quadratic Julia Sets, Ergodic Theory Dynam. Systems, 20 (2000), 1859-1883.  doi: 10.1017/S0143385700001024.  Google Scholar

Figure 1.  Connectedness locus for $d = 4$ and $d = 5$
Figure 2.  Filled Julia set and intervals of angles of $P_a$
[1]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[2]

Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487

[3]

Vladimír Špitalský. Entropy and exact Devaney chaos on totally regular continua. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3135-3152. doi: 10.3934/dcds.2013.33.3135

[4]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[5]

Dominik Kwietniak. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2451-2467. doi: 10.3934/dcds.2013.33.2451

[6]

Jakub Šotola. Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5119-5128. doi: 10.3934/dcds.2018225

[7]

Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511

[8]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[9]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[10]

Vincent Delecroix. Divergent trajectories in the periodic wind-tree model. Journal of Modern Dynamics, 2013, 7 (1) : 1-29. doi: 10.3934/jmd.2013.7.1

[11]

Miaohua Jiang, Qiang Zhang. A coupled map lattice model of tree dispersion. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 83-101. doi: 10.3934/dcdsb.2008.9.83

[12]

Frédéric Bernicot, Bertrand Maury, Delphine Salort. A 2-adic approach of the human respiratory tree. Networks & Heterogeneous Media, 2010, 5 (3) : 405-422. doi: 10.3934/nhm.2010.5.405

[13]

Luna Lomonaco, Carsten Lunde Petersen, Weixiao Shen. On parabolic external maps. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5085-5104. doi: 10.3934/dcds.2017220

[14]

Núria Fagella, David Martí-Pete. Dynamic rays of bounded-type transcendental self-maps of the punctured plane. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3123-3160. doi: 10.3934/dcds.2017134

[15]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic & Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[16]

Jianquan Li, Zuren Feng, Juan Zhang, Jie Lou. A competition model of the chemostat with an external inhibitor. Mathematical Biosciences & Engineering, 2006, 3 (1) : 111-123. doi: 10.3934/mbe.2006.3.111

[17]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[18]

Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275

[19]

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161

[20]

Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (40)
  • HTML views (79)
  • Cited by (0)

Other articles
by authors

[Back to Top]