In this paper, we investigate the asymptotic behavior of the solutions of the two-dimensional stochastic Navier-Stokes equations via the stationary Wong-Zakai approximations given by the Wiener shift. We prove the existence and uniqueness of tempered pullback attractors for the random equations of the Wong-Zakai approximations with a Lipschitz continuous diffusion term. Under certain conditions, we also prove the convergence of solutions and random attractors of the approximate equations when the step size of approximations approaches zero.
Citation: |
P. Acquistapace
and B. Terreni
, An approach to Itö linear equations in Hilbert spaces by approximation of white noise with coloured noise, Stochastic Anal. Appl., 2 (1984)
, 131-186.
doi: 10.1080/07362998408809031.![]() ![]() ![]() |
|
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
|
V. Bally
, A. Millet
and M. Sanz-Solé
, Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations, Ann. Probab., 23 (1995)
, 178-222.
doi: 10.1214/aop/1176988383.![]() ![]() ![]() |
|
P. W. Bates
, H. Lisei
and K. Lu
, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006)
, 1-21.
doi: 10.1142/S0219493706001621.![]() ![]() ![]() |
|
P. W. Bates
, K. Lu
and B. Wang
, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009)
, 845-869.
doi: 10.1016/j.jde.2008.05.017.![]() ![]() ![]() |
|
Z. Brzeźniak
, M. Capiński
and F. Flandoli
, A convergence result for stochastic partial differential equations, Stochastics, 24 (1988)
, 423-445.
doi: 10.1080/17442508808833526.![]() ![]() ![]() |
|
Z. Brzeźniak
and F. Flandoli
, Almost sure approximation of Wong-Zakai type for stochastic partial differential equations, Stochastic Process. Appl., 55 (1995)
, 329-358.
doi: 10.1016/0304-4149(94)00037-T.![]() ![]() ![]() |
|
M. Capiński
and N. J. Cutland
, Existence of global stochastic flow and attractors for NavierStokes equations, Probab. Theory Relat. Fields, 115 (1999)
, 121-151.
doi: 10.1007/s004400050238.![]() ![]() ![]() |
|
T. Caraballo
, M. Garrido-Atienza
, B. Schmalfuss
and J. Valero
, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008)
, 415-443.
doi: 10.3934/dcds.2008.21.415.![]() ![]() ![]() |
|
T. Caraballo
, J. Real
and I. Chueshov
, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008)
, 525-539.
doi: 10.3934/dcdsb.2008.9.525.![]() ![]() ![]() |
|
T. Caraballo
and J. Langa
, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 10 (2003)
, 491-513.
![]() ![]() |
|
T. Caraballo
, M. Garrido-Atienza
, B. Schmalfuss
and J. Valero
, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010)
, 439-455.
doi: 10.3934/dcdsb.2010.14.439.![]() ![]() ![]() |
|
T. Caraballo
, M. Garrido-Atienza
and T. Taniguchi
, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011)
, 3671-3684.
doi: 10.1016/j.na.2011.02.047.![]() ![]() ![]() |
|
T. Caraballo
, J. Langa
, V. S. Melnik
and J. Valero
, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003)
, 153-201.
doi: 10.1023/A:1022902802385.![]() ![]() ![]() |
|
I. Chueshov
and M. Scheutzow
, On the structure of attractors and invariant measures for a class of monotone random systems, Dynamical Systems, 19 (2004)
, 127-144.
doi: 10.1080/1468936042000207792.![]() ![]() ![]() |
|
I. Chueshov, Monotone Random Systems - Theory and Applications, Lecture Notes in Mathematics, 1779, Springer, Berlin, 2002.
doi: 10.1007/b83277.![]() ![]() ![]() |
|
H. Crauel
, A. Debussche
and F. Flandoli
, Random attractors, J. Dyn. Diff. Equat., 9 (1997)
, 307-341.
doi: 10.1007/BF02219225.![]() ![]() ![]() |
|
H. Crauel
and F. Flandoli
, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994)
, 365-393.
doi: 10.1007/BF01193705.![]() ![]() ![]() |
|
A. Deya
, M. Jolis
and L. Quer-Sardanyons
, The Stratonovich heat equation: A continuity result and weak approximations, Electron. J. Probab., 18 (2013)
, 1-34.
doi: 10.1214/EJP.v18-2004.![]() ![]() ![]() |
|
J. Duan
and B. Schmalfuss
, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Comm. Math. Sci., 1 (2003)
, 133-151.
doi: 10.4310/CMS.2003.v1.n1.a9.![]() ![]() ![]() |
|
F. Flandoli
and B. Schmalfuss
, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996)
, 21-45.
doi: 10.1080/17442509608834083.![]() ![]() ![]() |
|
F. Flandoli, Regularity Theory and Stochastic Flow for Parabolic SPDEs, Stochastics Monographs Vol. 9, Gordon and Breach Science Publishers SA, Singapore, 1995.
![]() ![]() |
|
A. Ganguly, Wong-Zakai type convergence in infinite dimensions, Electron. J. Probab., 18 (2013), 34 pp.
doi: 10.1214/EJP.v18-2650.![]() ![]() ![]() |
|
M. Garrido-Atienza
and B. Schmalfuss
, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dynam. Differential Equations, 23 (2011)
, 671-681.
doi: 10.1007/s10884-011-9222-5.![]() ![]() ![]() |
|
M. Garrido-Atienza
, A. Ogrowsky
and B. Schmalfuss
, Random differential equations with random delays, Stoch. Dyn., 11 (2011)
, 369-388.
doi: 10.1142/S0219493711003358.![]() ![]() ![]() |
|
M. Garrido-Atienza
, B. Maslowski
and B. Schmalfuss
, Random attractors for stochastic equations driven by a fractional Brownian motion, International J. Bifurcation and Chaos, 20 (2010)
, 2761-2782.
doi: 10.1142/S0218127410027349.![]() ![]() ![]() |
|
B. Gess
, W. Liu
and M. Rockner
, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251 (2011)
, 1225-1253.
doi: 10.1016/j.jde.2011.02.013.![]() ![]() ![]() |
|
W. Grecksch
and B. Schmalfuss
, Approximation of the stochastic Navier-Stokes equation, Mat. Apl. Comput., 15 (1996)
, 227-239.
![]() ![]() |
|
I. Gyöngy
and A. Shmatkov
, Rate of convergence of Wong-Zakai approximations for stochastic partial differential equations, Applied Mathematics and Optimization, 54 (2006)
, 315-341.
doi: 10.1007/s00245-006-0873-2.![]() ![]() ![]() |
|
I. Gyöngy
, On the approximation of stochastic partial differential equations, Ⅰ, Stochastics, 25 (1988)
, 59-85.
doi: 10.1080/17442508808833533.![]() ![]() ![]() |
|
I. Gyöngy
, On the approximation of stochastic partial differential equations, Ⅱ, Stochastics, 26 (1989)
, 129-164.
doi: 10.1080/17442508908833554.![]() ![]() ![]() |
|
M. Hairer
and E. Pardoux
, A Wong-Zakai theorem for stochastic PDE, J. Math. Soc. Japan., 67 (2015)
, 1551-1604.
doi: 10.2969/jmsj/06741551.![]() ![]() ![]() |
|
J. Huang
and W. Shen
, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains, Discrete Contin. Dyn. Syst., 24 (2009)
, 855-882.
doi: 10.3934/dcds.2009.24.855.![]() ![]() ![]() |
|
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Kodansha, Ltd., Tokyo, 1981.
![]() ![]() |
|
N. Ikeda
, S. Nakao
and Y. Yamato
, A class of approximations of Brownian motion, Publ. RIMS, Kyoto Univ., 13 (1977)
, 285-300.
doi: 10.2977/prims/1195190109.![]() ![]() ![]() |
|
D. Kelley
and I. Melbourne
, Smooth approximation of stochastic differential equations, Ann. Probab., 44 (2016)
, 479-520.
doi: 10.1214/14-AOP979.![]() ![]() ![]() |
|
P. E. Kloeden
and J. A. Langa
, Flattening, squeezing and the existence of random attractors, Proc. Royal Soc. London Serie A., 463 (2007)
, 163-181.
doi: 10.1098/rspa.2006.1753.![]() ![]() ![]() |
|
F. Konecny
, On Wong-Zakai approximation of stochastic differential equations, J. Multivariate Anal., 13 (1983)
, 605-611.
doi: 10.1016/0047-259X(83)90043-X.![]() ![]() ![]() |
|
T. Kurtz
and P. Protter
, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab., 19 (1991)
, 1035-1070.
doi: 10.1214/aop/1176990334.![]() ![]() ![]() |
|
T. Kurtz
and P. Protter
, Wong-Zakai corrections, random evolutions, and simulation schemes for sde. Stochastic Analysis: Liber Amicorum for Moshe Zakai, Academic Press, San Diego., (1991)
, 331-346.
![]() ![]() |
|
K. Lu
and Q. Wang
, Chaotic behavior in differential equations driven by a Brownian motion, J. Differential Equations, 251 (2011)
, 2853-2895.
doi: 10.1016/j.jde.2011.05.032.![]() ![]() ![]() |
|
K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Diff. Equat. (2017), https://doi.org/10.1007/s10884-017-9626-y.
![]() |
|
R. Manthey
, Weak convergence of solutions of the heat equation with Gaussian noise, Math. Nachr., 123 (1985)
, 157-168.
doi: 10.1002/mana.19851230115.![]() ![]() ![]() |
|
E. J. McShane
, Stochastic differential equations and models of random processes, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), 3 (1972)
, 263-294.
![]() ![]() |
|
S. Nakao
, On weak convergence of sequences of continuous local martingale, Annales De L'I. H. P., Section B, 22 (1986)
, 371-380.
![]() ![]() |
|
S. Nakao and Y. Yamato, Approximation theorem on stochastic differential equations, Proc. International Symp. S.D.E., Kyoto. 1976,283-296.
![]() ![]() |
|
A. Nowak
, A Wong-Zakai type theorem for stochastic systems of Burgers equations, Panamer. Math. J., 16 (2006)
, 1-25.
![]() ![]() |
|
P. Protter
, Approximations of solutions of stochastic differential equations driven by semimartingales, Ann. Probab., 13 (1985)
, 716-743.
doi: 10.1214/aop/1176992905.![]() ![]() ![]() |
|
B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 185-192, Dresden, 1992.
![]() |
|
J. Shen
, K. Lu
and W. Zhang
, Heteroclinic chaotic behavior driven by a Brownian motion, J. Differential Equations, 255 (2013)
, 4185-4225.
doi: 10.1016/j.jde.2013.08.003.![]() ![]() ![]() |
|
Z. Shen
, S. Zhou
and W. Shen
, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010)
, 1432-1457.
doi: 10.1016/j.jde.2009.10.007.![]() ![]() ![]() |
|
D. W. Stook
and S. R. S. Varadhan
, On the support of diffusion processes with applications to the strong maximum principle, Proc. 6-th Berkeley Symp. on Math. Stat. and Prob., 3 (1972)
, 333-359.
![]() ![]() |
|
H. J. Sussmann
, An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point, Bull. Amer. Math. Soc., 83 (1977)
, 296-298.
doi: 10.1090/S0002-9904-1977-14312-7.![]() ![]() ![]() |
|
H. J. Sussmann
, On the gap between deterministic and stochastic ordinary differential equations, Ann. Probab., 6 (1978)
, 19-41.
doi: 10.1214/aop/1176995608.![]() ![]() ![]() |
|
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
|
G. Tessitore
and J. Zabczyk
, Wong-Zakai approximations of stochastic evolution equations, J. Evol. Equ., 6 (2006)
, 621-655.
doi: 10.1007/s00028-006-0280-9.![]() ![]() ![]() |
|
B. Wang
, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011)
, 3639-3663.
doi: 10.1090/S0002-9947-2011-05247-5.![]() ![]() ![]() |
|
B. Wang
, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012)
, 1544-1583.
doi: 10.1016/j.jde.2012.05.015.![]() ![]() ![]() |
|
B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp.
doi: 10.1142/S0219493714500099.![]() ![]() ![]() |
|
B. Wang
, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014)
, 269-300.
doi: 10.3934/dcds.2014.34.269.![]() ![]() ![]() |
|
E. Wong
and M. Zakai
, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., 36 (1965)
, 1560-1564.
doi: 10.1214/aoms/1177699916.![]() ![]() ![]() |
|
E. Wong
and M. Zakai
, On the relation between ordinary and stochastic differential equations, Internat. J. Engrg. Sci., 3 (1965)
, 213-229.
doi: 10.1016/0020-7225(65)90045-5.![]() ![]() ![]() |