|
M. Actis, P. Morin and M. S. Pauletti, A new perspective on hierarchical spline spaces for adaptivity, arXiv: 1808.02053
|
|
Y. Bazilevs
, V. M. Calo
, J. A. Cottrell
, J. Evans
, T. J. R. Hughes
, S. Lipton
, M. A. Scott
and T. W. Sederberg
, Isogeometric analysis using T-Splines, Comput. Methods Appl. Mech. Engrg., 199 (2010)
, 229-263.
doi: 10.1016/j.cma.2009.02.036.
|
|
L. Beirão da Veiga
, A. Buffa
, D. Cho
and G. Sangalli
, Analysis-Suitable T-splines are Dual-Compatible, Comput. Methods Appl. Mech. Engrg., 249/252 (2012)
, 42-51.
doi: 10.1016/j.cma.2012.02.025.
|
|
L. Beirão da Veiga
, A. Buffa
, G. Sangalli
and R. Vázquez
, Analysis-suitable T-splines of arbitrary degree: Definition, linear independence and approximation properties, Math. Models Methods Appl. Sci., 23 (2013)
, 1979-2003.
doi: 10.1142/S0218202513500231.
|
|
A. Bonito
and R. H. Nochetto
, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method, SIAM J. Numer. Anal., 48 (2010)
, 734-771.
doi: 10.1137/08072838X.
|
|
C. Bracco, C. Giannelli and R. Vázquez, Refinement algorithms for adaptive isogeometric methods with hierarchical splines, Axioms, 7 (2018), 43.
doi: 10.3390/axioms7030043.
|
|
A. Buffa
and E. M. Garau
, Refinable spaces and local approximation estimates for hierarchical splines, IMA J. Numer. Anal., 37 (2017)
, 1125-1149.
doi: 10.1093/imanum/drw035.
|
|
A. Buffa
and E. M. Garau
, A posteriori error estimators for hierarchical B-spline discretizations, Math. Models Methods Appl. Sci., 28 (2018)
, 1453-1480.
doi: 10.1142/S0218202518500392.
|
|
A. Buffa, E. M. Garau, C. Giannelli and G. Sangalli, On quasi-interpolation operators in spline spaces, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations (eds. G. R. Barrenechea et al.), vol. 114, Lecture Notes in Computational Science and Engineering, 2016, 73-91.
doi: 10.1007/978-3-319-41640-3_3.
|
|
A. Buffa
and C. Giannelli
, Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence, Math. Models Methods Appl. Sci., 26 (2016)
, 1-25.
doi: 10.1142/S0218202516500019.
|
|
A. Buffa
and C. Giannelli
, Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates, Math. Models Methods Appl. Sci., 27 (2017)
, 2781-2802.
doi: 10.1142/S0218202517500580.
|
|
A. Buffa
, C. Giannelli
, P. Morgenstern
and D. Peterseim
, Complexity of hierarchical refinement for a class of admissible mesh configurations, Comput. Aided Geom. Design, 47 (2016)
, 83-92.
doi: 10.1016/j.cagd.2016.04.003.
|
|
C. de Boor,
A Practical Guide to Splines, Springer, revised ed., 2001.
|
|
T. Dokken
, T. Lyche
and K. F. Pettersen
, Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Design, 30 (2013)
, 331-356.
doi: 10.1016/j.cagd.2012.12.005.
|
|
M. R. Dörfel
, B. Jüttler
and B. Simeon
, Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199 (2010)
, 264-275.
doi: 10.1016/j.cma.2008.07.012.
|
|
W. Dörfler
, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996)
, 1106-1124.
doi: 10.1137/0733054.
|
|
E. J. Evans
, M. A. Scott
, X. Li
and D. C. Thomas
, Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 284 (2015)
, 1-20.
doi: 10.1016/j.cma.2014.05.019.
|
|
M. Feischl
, G. Gantner
, A. Haberl
and D. Praetorius
, Adaptive 2D IGA boundary element methods, Engineering Analysis with Boundary Elements, 62 (2016)
, 141-153.
doi: 10.1016/j.enganabound.2015.10.003.
|
|
M. Feischl
, G. Gantner
, A. Haberl
and D. Praetorius
, Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations, Numer. Math., 136 (2017)
, 147-182.
doi: 10.1007/s00211-016-0836-8.
|
|
G. Gantner
, D. Haberlik
and D. Praetorius
, Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines, Math. Models Methods Appl. Sci., 27 (2017)
, 2631-2674.
doi: 10.1142/S0218202517500543.
|
|
E. Garau
and R. Vázquez
, Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines, Appl. Numer. Math., 123 (2018)
, 58-87.
doi: 10.1016/j.apnum.2017.08.006.
|
|
C. Giannelli
and B. Jüttler
, Bases and dimensions of bivariate hierarchical tensor-product splines, J. Comput. Appl. Math., 239 (2013)
, 162-178.
doi: 10.1016/j.cam.2012.09.031.
|
|
C. Giannelli
, B. Jüttler
, S. K. Kleiss
, A. Mantzaflaris
, B. Simeon
and J. Špeh
, THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 299 (2016)
, 337-365.
doi: 10.1016/j.cma.2015.11.002.
|
|
C. Giannelli
, B. Jüttler
and H. Speleers
, THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Design, 29 (2012)
, 485-498.
doi: 10.1016/j.cagd.2012.03.025.
|
|
C. Giannelli
, B. Jüttler
and H. Speleers
, Strongly stable bases for adaptively refined multilevel spline spaces, Adv. Comput. Math., 40 (2014)
, 459-490.
doi: 10.1007/s10444-013-9315-2.
|
|
P. Hennig
, M. Kästner
, P. Morgenstern
and D. Peterseim
, Adaptive mesh refinement strategies in isogeometric analysis— A computational comparison, Comput. Methods Appl. Mech. Engrg., 316 (2017)
, 424-448.
doi: 10.1016/j.cma.2016.07.029.
|
|
T. J. R. Hughes
, J. A. Cottrell
and Y. Bazilevs
, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194 (2005)
, 4135-4195.
doi: 10.1016/j.cma.2004.10.008.
|
|
K. A. Johannessen
, T. Kvamsdal
and T. Dokken
, Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Engrg., 269 (2014)
, 471-514.
doi: 10.1016/j.cma.2013.09.014.
|
|
K. A. Johannessen
, F. Remonato
and T. Kvamsdal
, On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines, Comput. Methods Appl. Mech. Engrg., 291 (2015)
, 64-101.
doi: 10.1016/j.cma.2015.02.031.
|
|
G. Kiss
, C. Giannelli
, U. Zore
, B. Jüttler
, D. Großmann
and J. Barner
, Adaptive CAD model (re-)construction with THB-splines, Graphical models, 76 (2014)
, 273-288.
doi: 10.1016/j.gmod.2014.03.017.
|
|
R. Kraft, Adaptive and linearly independent multilevel B-splines, in Surface Fitting and Multiresolution Methods (eds. A. Le Méhauté, C. Rabut and L. L. Schumaker), Vanderbilt University Press, Nashville, 1997,209-218.
|
|
M. Kumar
, T. Kvamsdal
and K. A. Johannessen
, Simple a posteriori error estimators in adaptive isogeometric analysis, Comput. Math. Appl., 70 (2015)
, 1555-1582.
doi: 10.1016/j.camwa.2015.05.031.
|
|
M. Kumar
, T. Kvamsdal
and K. A. Johannessen
, Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 316 (2017)
, 1086-1156.
doi: 10.1016/j.cma.2016.11.014.
|
|
G. Kuru
, C. V. Verhoosel
, K. G. van der Zeeb
and E. H. van Brummelen
, Goal-adaptive isogeometric analysis with hierarchical splines, Comput. Methods Appl. Mech. Engrg., 270 (2014)
, 270-292.
doi: 10.1016/j.cma.2013.11.026.
|
|
X. Li
, J. Zheng
, T. W. Sederberg
, T. J. R. Hughes
and M. A. Scott
, On linear independence of T-spline blending functions, Comput. Aided Geom. Design, 29 (2012)
, 63-76.
doi: 10.1016/j.cagd.2011.08.005.
|
|
G. Lorenzo
, M. A. Scott
, K. Tew
, T. J. R. Hughes
and H. Gomez
, Hierarchically refined and coarsened splines for moving interface problems, with particular application to phase-field models of prostate tumor growth, Comput. Methods Appl. Mech. Engrg., 319 (2017)
, 515-548.
doi: 10.1016/j.cma.2017.03.009.
|
|
D. Mokriš
, B. Jüttler
and C. Giannelli
, On the completeness of hierarchical tensor-product B-splines, J. Comput. Appl. Math., 271 (2014)
, 53-70.
doi: 10.1016/j.cam.2014.04.001.
|
|
P. Morgenstern
, Globally structured three-dimensional analysis-suitable T-splines: definition, linear independence and m-graded local refinement, SIAM J. Numer. Anal., 54 (2016)
, 2163-2186.
doi: 10.1137/15M102229X.
|
|
P. Morgenstern,
Mesh Refinement Strategies for the Adaptive Isogeometric Method, PhD thesis, Institut für Numerische Simulation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2017.
|
|
P. Morgenstern
and D. Peterseim
, Analysis-suitable adaptive T-mesh refinement with linear complexity, Comput. Aided Geom. Design, 34 (2015)
, 50-66.
doi: 10.1016/j.cagd.2015.02.003.
|
|
P. Morin, R. H. Nochetto and M. S. Pauletti,
An adaptive method for hierarchical splines. A posteriori estimation via local problems, convergence and optimality, In preparation.
|
|
R. H. Nochetto, K. G. Siebert and A. Veeser, Theory of adaptive finite element methods: An introduction, in Multiscale, Nonlinear and Adaptive Approximation (eds. R. DeVore and A. Kunoth), Springer Berlin Heidelberg, 2009,409-542.
doi: 10.1007/978-3-642-03413-8_12.
|
|
R. H. Nochetto and A. Veeser, Primer of adaptive finite element methods, in Multiscale and Adaptivity: Modeling, Numerics and Applications, vol. 2040 of Lecture Notes in Math., Springer, Heidelberg, 2012,125-225.
doi: 10.1007/978-3-642-24079-9.
|
|
D. Schillinger
, L. Dedé
, M. Scott
, J. Evans
, M. Borden
, E. Rank
and T. Hughes
, An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249/252 (2012)
, 116-150.
doi: 10.1016/j.cma.2012.03.017.
|
|
L. L. Schumaker,
Spline Functions: Basic Theory, 3rd Edition, Cambridge University Press, 2007.
doi: 10.1017/CBO9780511618994.
|
|
M. A. Scott
, D. C. Thomas
and E. J. Evans
, Isogeometric spline forests, Comput. Methods Appl. Mech. Engrg., 269 (2014)
, 222-264.
doi: 10.1016/j.cma.2013.10.024.
|
|
T. W. Sederberg
, D. L. Cardon
, G. T. Finnigan
, N. S. North
, J. Zheng
and T. Lyche
, T-spline simplification and local refinement, ACM Trans. Graphics, 23 (2004)
, 276-283.
doi: 10.1145/1015706.1015715.
|
|
H. Speleers
and C. Manni
, Effortless quasi-interpolation in hierarchical spaces, Numer. Math., 132 (2016)
, 155-184.
doi: 10.1007/s00211-015-0711-z.
|
|
A.-V. Vuong
, C. Giannelli
, B. Jüttler
and B. Simeon
, A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200 (2011)
, 3554-3567.
doi: 10.1016/j.cma.2011.09.004.
|