January  2019, 39(1): 309-344. doi: 10.3934/dcds.2019013

The variational discretization of the constrained higher-order Lagrange-Poincaré equations

1. 

Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, Michigan, 48109, USA

2. 

Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, Calle Nicolás Cabrera 13-15, Campus UAM, Madrid, 28049, Spain

3. 

Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kindom

Received  January 2018 Revised  July 2018 Published  October 2018

Fund Project: A. Bloch was supported by NSF grant DMS-1613819 and AFOSR grant FA 9550-18-0028. L. Colombo was supported by MINECO (Spain) grant MTM2016-76072-P. F. Jiménez was supported by the EPSRC project: "Fractional Variational Integration and Optimal Control"; ref: EP/P020402/1. We thank the reviewers for their valuable comments, that have helped to improve this work

In this paper we investigate a variational discretization for the class of mechanical systems in presence of symmetries described by the action of a Lie group which reduces the phase space to a (non-trivial) principal bundle. By introducing a discrete connection we are able to obtain the discrete constrained higher-order Lagrange-Poincaré equations. These equations describe the dynamics of a constrained Lagrangian system when the Lagrangian function and the constraints depend on higher-order derivatives such as the acceleration, jerk or jounces. The equations, under some mild regularity conditions, determine a well defined (local) flow which can be used to define a numerical scheme to integrate the constrained higher-order Lagrange-Poincaré equations.

Optimal control problems for underactuated mechanical systems can be viewed as higher-order constrained variational problems. We study how a variational discretization can be used in the construction of variational integrators for optimal control of underactuated mechanical systems where control inputs act soley on the base manifold of a principal bundle (the shape space). Examples include the energy minimum control of an electron in a magnetic field and two coupled rigid bodies attached at a common center of mass.

Citation: Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013
References:
[1]

R. Benito and D. Martín de Diego, Discrete Vakonomic Mechanics, Journal of Mathematical Physics, 46 (2005), 083521, 18pp. doi: 10.1063/1.2008214. Google Scholar

[2]

R. BenitoM. de León and D. Martín de Diego, Higher-order discrete lagrangian mechanics, Int. Journal of Geometric Methods in Modern Physics, 3 (2006), 421-436. doi: 10.1142/S0219887806001235. Google Scholar

[3]

A. M. Bloch, Nonholonomic Mechanics and Control, Vol. 24 of Interdisciplinary Appl. Math. Springer-Verlag, New York, 2003. doi: 10.1007/b97376. Google Scholar

[4]

A. BlochL. ColomboR. Gupta and D. Martín de Diego, A geometric approach to the optimal control of nonholonomic mechanical systems, Analysis and Geometry in Control Theory and Its Applications, 11 (2015), 35-64. doi: 10.1007/978-3-319-06917-3_2. Google Scholar

[5]

A. M. Bloch and P. E. Crouch, Reduction of Euler Lagrange problems for constrained variational problems and relation with optimal control problems, Proceedings of 33rd IEEE Conference on Decision and Control, (1994), 2584-2590. Google Scholar

[6]

A. M. Bloch and P. E. Crouch, On the equivalence of higher order variational problems and optimal control problems, Proceedings of 35rd IEEE Conference on Decision and Control, (1996), 1648-1653. Google Scholar

[7]

A. BlochP. CrouchN. Nordkvist and A. Sanyal, Embedded geodesic problems and optimal control for matrix Lie groups, J. Geom. Mech., 3 (2011), 197-223. doi: 10.3934/jgm.2011.3.197. Google Scholar

[8]

A. M. BlochI. I. HusseinM. Leok and A. K. Sanyal, Geometric structure-preserving optimal control of a rigid body, Journal of Dynamical and Control Systems, 15 (2009), 307-330. doi: 10.1007/s10883-009-9071-2. Google Scholar

[9]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and double bracket dissipation, Comm. Math. Phys., 175 (1996), 1-42. doi: 10.1007/BF02101622. Google Scholar

[10]

M. BruverisD. EllisF. Gay-Balmaz and D. D. Holm, Un-reduction, Journal of Geometric Mechanics, 3 (2011), 363-387. doi: 10.3934/jgm.2011.3.363. Google Scholar

[11]

F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, Springer-Verlag, New York, 2005. doi: 10.1007/978-1-4899-7276-7. Google Scholar

[12]

C. Burnett, D. Holm and D. Meier, Geometric integrators for higher-order mechanics on Lie groups, Proc. R. Soc. A., 469 (2013), 20130249.Google Scholar

[13]

J. A. Cadzow, Discrete Calculus of Variations, Int. J. Control, 11 (1970), 393-407.Google Scholar

[14]

M. CamarinhaF. Silva Leite and P. E. Crouch, Splines of class Ck on non-Euclidean spaces, IMA Journal of Mathematical Control & Information, 12 (1995), 399-410. doi: 10.1093/imamci/12.4.399. Google Scholar

[15]

M. CamarinhaF. Silva Leite and P. Crouch, On the geometry of Riemannian cubic polynomials, Differential Geometry and its Applications, 15 (2001), 107-135. doi: 10.1016/S0926-2245(01)00054-7. Google Scholar

[16]

C. M. Campos, O. Junge and S. Ober-Blobaum, Higher Order Variational Time Discretization of Optimal Control Problems, 20th International Symposium on Mathematical Theory of Networks and Systems, Melbourne, 2012.Google Scholar

[17]

C. M. CamposS. Ober-Blobaum and E. Trelat, High order variational integrators in the optimal control of mechanical systems, Discrete and Continuous Dynamical Systems - Series A, 359 (2015), 4193-4223. doi: 10.3934/dcds.2015.35.4193. Google Scholar

[18]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Memories of the American Mathematical Society, 152 (2001), ⅹ+108 pp. doi: 10.1090/memo/0722. Google Scholar

[19]

L. Colombo, Second-order constrained variational problems on Lie algebroids: Applications to optimal control, Journal Geometric Mechanics, 9 (2017), 1-45. doi: 10.3934/jgm.2017001. Google Scholar

[20]

L. ColomboR. Gupta and A. Bloch, Higher-order constrained variational problems on principal bundles with applications to optimal control of underactuated systems, IFAC-PapersOnLine, 48 (2015), 87-92. Google Scholar

[21]

L. ColomboS. Ferraro and D. Martín de Diego, Geometric integrators for higher-order variational systems and their application to optimal control, Journal of Nonlinear Science, 26 (2016), 1615-1650. doi: 10.1007/s00332-016-9314-9. Google Scholar

[22]

L. ColomboF. Jiménez and D. Martín de Diego, Variational integrators for mechanical control systems with symmetries, Journal of Computational Dynamics, 2 (2015), 193-225. doi: 10.3934/jcd.2015003. Google Scholar

[23]

L. Colombo, F. Jiménez and D. Martín de Diego, Discrete Second-Order Euler-Poincaré Equations. An application to optimal control, International Journal of Geometric Methods in Modern Physics, 9(2012), 1250037, 20 pp. doi: 10.1142/S0219887812500375. Google Scholar

[24]

L. Colombo, D. Martín de Diego and M. Zuccalli, On variational integrators for optimal control of mechanical systems, RACSAM Rev. R. Acad. Cienc. Ser A. Mat, 2011.Google Scholar

[25]

L. Colombo and D. Martín de Diego, Higher-order variational problems on Lie groups and optimal control applications, J. Geom. Mech., 6 (2014), 451-478. doi: 10.3934/jgm.2014.6.451. Google Scholar

[26]

L. Colombo L, D. Martín de Diego and M. Zuccalli, Higher-order variational problems with constraints, Journal of Mathematical Physics., 54 (2013), 093507, 17pp. doi: 10.1063/1.4820817. Google Scholar

[27]

L. Colombo and D. Martín de Diego, Second order variational problems on Lie groupoids and optimal control applications, Discrete and Continuous Dynamical Systems-Series A, 36 (2016), 6023-6064. doi: 10.3934/dcds.2016064. Google Scholar

[28]

L. Colombo and P. D. Prieto Martínez, Regularity properties of fiber derivatives associated with higher-order mechanical systems, Journal of Mathematical Physics, 57(2016), 082901, 25pp. doi: 10.1063/1.4960822. Google Scholar

[29]

J CortésM de LeónD. Martín de Diego and S Martínez, Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions, SIAM Journal on Control and Optimization, 41 (2002), 1389-1412. doi: 10.1137/S036301290036817X. Google Scholar

[30]

A. FernándezP. García and C. Rodrigo, Variational integrators in discrete vakonomic mechanics, Rev. R. Acad. A, 106 (2012), 137-159. doi: 10.1007/s13398-011-0030-x. Google Scholar

[31]

J. FernándezC. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems, Journal of Geometric Mechanics, 2 (2010), 69-111. doi: 10.3934/jgm.2010.2.69. Google Scholar

[32]

F. Gay-BalmazD. Holm and T. Ratiu, Higher order Lagrange-Poincaré, and Hamilton-Poincaré, reductions, Bulletin of the Brazialian Mathematical Society, 42 (2011), 579-606. doi: 10.1007/s00574-011-0030-7. Google Scholar

[33]

F. Gay-BalmazD. D. HolmD. M. MeierT. S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems, Communications in Mathematical Physics, 309 (2012), 413-458. doi: 10.1007/s00220-011-1313-y. Google Scholar

[34]

F. Gay-BalmazD. D. HolmD. M. MeierT. S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems Ⅱ, J. Nonlin. Sci., 22 (2012), 553-597. doi: 10.1007/s00332-012-9137-2. Google Scholar

[35]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag Berlin, 2002. doi: 10.1007/978-3-662-05018-7. Google Scholar

[36]

D. Holm, T. Schmah and C. Stoica, Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions, Oxford University Press, 2009. Google Scholar

[37]

D. IglesiasJC MarreroD Mart n de Diego and D Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dynamical Systems, 23 (2008), 351-397. doi: 10.1080/14689360802294220. Google Scholar

[38]

F. Jiménez, M. de León and D. Martín de Diego, Hamiltonian dynamics and constrained variational calculus: Continuous and discrete settings, J. Phys A, 45 (2012), 205204, 29pp. doi: 10.1088/1751-8113/45/20/205204. Google Scholar

[39]

M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, North-Holland Mathematical Studies 112, North-Holland, Amsterdam, 1985. Google Scholar

[40]

T. LeeM. Leok and H. McClamroch, Optimal attitude control of a rigid body using geometrically exact computations on SO(3), Journal of Dynamical and Control Systems, 14 (2008), 465-487. doi: 10.1007/s10883-008-9047-7. Google Scholar

[41]

T. Lee, M. Leok and H. McClamroch, Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds: A Geometric Approach to Modeling and Analysis, Springer, Interaction of Mechanics and Mathematics, 2018. doi: 10.1007/978-3-319-56953-6. Google Scholar

[42]

M. Leok, J. E. Marsden and A. Weinstein, A Discrete Theory of Connections on Principal Bundles, Preprint, https://arXiv.org/abs/math/0508338, 2005.Google Scholar

[43]

M. Leok and T. Shingel, Prolongation-collocation variational integrators, IMA J. Numer. Anal., 32 (2012), 1194-1216. doi: 10.1093/imanum/drr042. Google Scholar

[44]

A. Lewis, Reduction of Simple Mechanical Systems, Mechanics and Symmetry Seminars, University of Warwick, https://mast.queensu.ca/~andrew/, 1997.Google Scholar

[45]

S. LeyendeckerS. Ober-BlobaumJ. Marsden and M. Ortiz, Discrete mechanics and optimal control for constrained systems, Optim. Control, Appl. Methods, 316 (2010), 505-528. doi: 10.1002/oca.912. Google Scholar

[46]

J. C. MarreroD. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian Mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348. doi: 10.1088/0951-7715/19/6/006. Google Scholar

[47]

J. C. MarreroD. Martín de Diego and A. Stern, Symplectic groupies and discrete constrained Lagrangian mechanics, Discrete and Continuous Mechanical Systems, Serie A, 35 (2015), 367-397. doi: 10.3934/dcds.2015.35.367. Google Scholar

[48]

J. E. Marsden and J. Scheurle, The Reduced Euler-Lagrange equations, Fields Institute Communications, 1 (1993), 139-164. Google Scholar

[49]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514. doi: 10.1017/S096249290100006X. Google Scholar

[50]

J. Marsden and J. Wendlandt, Mechanical Integrators Derived from a Discrete Variational Principle, Physica D, 106 (1997), 223-246. doi: 10.1016/S0167-2789(97)00051-1. Google Scholar

[51]

J. E. MarsdenS. Pekarsky and S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999), 1647-1662. doi: 10.1088/0951-7715/12/6/314. Google Scholar

[52]

J. E. MarsdenS. Pekarsky and S. Shkoller, Symmetry reduction of discrete Lagrangian mechanics on Lie groups, Journal of Geometry and Physics, 36 (2000), 140-151. doi: 10.1016/S0393-0440(00)00018-8. Google Scholar

[53]

J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243. doi: 10.1007/BF02352494. Google Scholar

[54]

S. Ober-BlobaumO. Junge and J. E. Marsden, Discrete mechanics and optimal control: An analysis, ESAIM Control Optim. Calc. Var., 17 (2011), 322-352. doi: 10.1051/cocv/2010012. Google Scholar

[55]

S. Ober-Blobaum, Galerkin variational integrators and modified symplectic Runge-Kutta methods, IMA J. Numer. Anal., 37 (2017), 375-406. doi: 10.1093/imanum/drv062. Google Scholar

[56]

T. Ohsawa, Symmetry reduction of optimal control systems and principal connections, SIAM Journal on Control and Optimization, 51 (2013), 96-120. doi: 10.1137/110835219. Google Scholar

[57]

J. P. Ostrowski, Computing Reduced Equations for Robotic Systems with Constraints and Symmetries, IEEE Transactions on robotic and automation, 1999.Google Scholar

[58]

G. W. Patrick and C. Cuell, Error analysis of variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264. doi: 10.1007/s00211-009-0245-3. Google Scholar

show all references

References:
[1]

R. Benito and D. Martín de Diego, Discrete Vakonomic Mechanics, Journal of Mathematical Physics, 46 (2005), 083521, 18pp. doi: 10.1063/1.2008214. Google Scholar

[2]

R. BenitoM. de León and D. Martín de Diego, Higher-order discrete lagrangian mechanics, Int. Journal of Geometric Methods in Modern Physics, 3 (2006), 421-436. doi: 10.1142/S0219887806001235. Google Scholar

[3]

A. M. Bloch, Nonholonomic Mechanics and Control, Vol. 24 of Interdisciplinary Appl. Math. Springer-Verlag, New York, 2003. doi: 10.1007/b97376. Google Scholar

[4]

A. BlochL. ColomboR. Gupta and D. Martín de Diego, A geometric approach to the optimal control of nonholonomic mechanical systems, Analysis and Geometry in Control Theory and Its Applications, 11 (2015), 35-64. doi: 10.1007/978-3-319-06917-3_2. Google Scholar

[5]

A. M. Bloch and P. E. Crouch, Reduction of Euler Lagrange problems for constrained variational problems and relation with optimal control problems, Proceedings of 33rd IEEE Conference on Decision and Control, (1994), 2584-2590. Google Scholar

[6]

A. M. Bloch and P. E. Crouch, On the equivalence of higher order variational problems and optimal control problems, Proceedings of 35rd IEEE Conference on Decision and Control, (1996), 1648-1653. Google Scholar

[7]

A. BlochP. CrouchN. Nordkvist and A. Sanyal, Embedded geodesic problems and optimal control for matrix Lie groups, J. Geom. Mech., 3 (2011), 197-223. doi: 10.3934/jgm.2011.3.197. Google Scholar

[8]

A. M. BlochI. I. HusseinM. Leok and A. K. Sanyal, Geometric structure-preserving optimal control of a rigid body, Journal of Dynamical and Control Systems, 15 (2009), 307-330. doi: 10.1007/s10883-009-9071-2. Google Scholar

[9]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and double bracket dissipation, Comm. Math. Phys., 175 (1996), 1-42. doi: 10.1007/BF02101622. Google Scholar

[10]

M. BruverisD. EllisF. Gay-Balmaz and D. D. Holm, Un-reduction, Journal of Geometric Mechanics, 3 (2011), 363-387. doi: 10.3934/jgm.2011.3.363. Google Scholar

[11]

F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, Springer-Verlag, New York, 2005. doi: 10.1007/978-1-4899-7276-7. Google Scholar

[12]

C. Burnett, D. Holm and D. Meier, Geometric integrators for higher-order mechanics on Lie groups, Proc. R. Soc. A., 469 (2013), 20130249.Google Scholar

[13]

J. A. Cadzow, Discrete Calculus of Variations, Int. J. Control, 11 (1970), 393-407.Google Scholar

[14]

M. CamarinhaF. Silva Leite and P. E. Crouch, Splines of class Ck on non-Euclidean spaces, IMA Journal of Mathematical Control & Information, 12 (1995), 399-410. doi: 10.1093/imamci/12.4.399. Google Scholar

[15]

M. CamarinhaF. Silva Leite and P. Crouch, On the geometry of Riemannian cubic polynomials, Differential Geometry and its Applications, 15 (2001), 107-135. doi: 10.1016/S0926-2245(01)00054-7. Google Scholar

[16]

C. M. Campos, O. Junge and S. Ober-Blobaum, Higher Order Variational Time Discretization of Optimal Control Problems, 20th International Symposium on Mathematical Theory of Networks and Systems, Melbourne, 2012.Google Scholar

[17]

C. M. CamposS. Ober-Blobaum and E. Trelat, High order variational integrators in the optimal control of mechanical systems, Discrete and Continuous Dynamical Systems - Series A, 359 (2015), 4193-4223. doi: 10.3934/dcds.2015.35.4193. Google Scholar

[18]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Memories of the American Mathematical Society, 152 (2001), ⅹ+108 pp. doi: 10.1090/memo/0722. Google Scholar

[19]

L. Colombo, Second-order constrained variational problems on Lie algebroids: Applications to optimal control, Journal Geometric Mechanics, 9 (2017), 1-45. doi: 10.3934/jgm.2017001. Google Scholar

[20]

L. ColomboR. Gupta and A. Bloch, Higher-order constrained variational problems on principal bundles with applications to optimal control of underactuated systems, IFAC-PapersOnLine, 48 (2015), 87-92. Google Scholar

[21]

L. ColomboS. Ferraro and D. Martín de Diego, Geometric integrators for higher-order variational systems and their application to optimal control, Journal of Nonlinear Science, 26 (2016), 1615-1650. doi: 10.1007/s00332-016-9314-9. Google Scholar

[22]

L. ColomboF. Jiménez and D. Martín de Diego, Variational integrators for mechanical control systems with symmetries, Journal of Computational Dynamics, 2 (2015), 193-225. doi: 10.3934/jcd.2015003. Google Scholar

[23]

L. Colombo, F. Jiménez and D. Martín de Diego, Discrete Second-Order Euler-Poincaré Equations. An application to optimal control, International Journal of Geometric Methods in Modern Physics, 9(2012), 1250037, 20 pp. doi: 10.1142/S0219887812500375. Google Scholar

[24]

L. Colombo, D. Martín de Diego and M. Zuccalli, On variational integrators for optimal control of mechanical systems, RACSAM Rev. R. Acad. Cienc. Ser A. Mat, 2011.Google Scholar

[25]

L. Colombo and D. Martín de Diego, Higher-order variational problems on Lie groups and optimal control applications, J. Geom. Mech., 6 (2014), 451-478. doi: 10.3934/jgm.2014.6.451. Google Scholar

[26]

L. Colombo L, D. Martín de Diego and M. Zuccalli, Higher-order variational problems with constraints, Journal of Mathematical Physics., 54 (2013), 093507, 17pp. doi: 10.1063/1.4820817. Google Scholar

[27]

L. Colombo and D. Martín de Diego, Second order variational problems on Lie groupoids and optimal control applications, Discrete and Continuous Dynamical Systems-Series A, 36 (2016), 6023-6064. doi: 10.3934/dcds.2016064. Google Scholar

[28]

L. Colombo and P. D. Prieto Martínez, Regularity properties of fiber derivatives associated with higher-order mechanical systems, Journal of Mathematical Physics, 57(2016), 082901, 25pp. doi: 10.1063/1.4960822. Google Scholar

[29]

J CortésM de LeónD. Martín de Diego and S Martínez, Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions, SIAM Journal on Control and Optimization, 41 (2002), 1389-1412. doi: 10.1137/S036301290036817X. Google Scholar

[30]

A. FernándezP. García and C. Rodrigo, Variational integrators in discrete vakonomic mechanics, Rev. R. Acad. A, 106 (2012), 137-159. doi: 10.1007/s13398-011-0030-x. Google Scholar

[31]

J. FernándezC. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems, Journal of Geometric Mechanics, 2 (2010), 69-111. doi: 10.3934/jgm.2010.2.69. Google Scholar

[32]

F. Gay-BalmazD. Holm and T. Ratiu, Higher order Lagrange-Poincaré, and Hamilton-Poincaré, reductions, Bulletin of the Brazialian Mathematical Society, 42 (2011), 579-606. doi: 10.1007/s00574-011-0030-7. Google Scholar

[33]

F. Gay-BalmazD. D. HolmD. M. MeierT. S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems, Communications in Mathematical Physics, 309 (2012), 413-458. doi: 10.1007/s00220-011-1313-y. Google Scholar

[34]

F. Gay-BalmazD. D. HolmD. M. MeierT. S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems Ⅱ, J. Nonlin. Sci., 22 (2012), 553-597. doi: 10.1007/s00332-012-9137-2. Google Scholar

[35]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag Berlin, 2002. doi: 10.1007/978-3-662-05018-7. Google Scholar

[36]

D. Holm, T. Schmah and C. Stoica, Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions, Oxford University Press, 2009. Google Scholar

[37]

D. IglesiasJC MarreroD Mart n de Diego and D Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dynamical Systems, 23 (2008), 351-397. doi: 10.1080/14689360802294220. Google Scholar

[38]

F. Jiménez, M. de León and D. Martín de Diego, Hamiltonian dynamics and constrained variational calculus: Continuous and discrete settings, J. Phys A, 45 (2012), 205204, 29pp. doi: 10.1088/1751-8113/45/20/205204. Google Scholar

[39]

M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, North-Holland Mathematical Studies 112, North-Holland, Amsterdam, 1985. Google Scholar

[40]

T. LeeM. Leok and H. McClamroch, Optimal attitude control of a rigid body using geometrically exact computations on SO(3), Journal of Dynamical and Control Systems, 14 (2008), 465-487. doi: 10.1007/s10883-008-9047-7. Google Scholar

[41]

T. Lee, M. Leok and H. McClamroch, Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds: A Geometric Approach to Modeling and Analysis, Springer, Interaction of Mechanics and Mathematics, 2018. doi: 10.1007/978-3-319-56953-6. Google Scholar

[42]

M. Leok, J. E. Marsden and A. Weinstein, A Discrete Theory of Connections on Principal Bundles, Preprint, https://arXiv.org/abs/math/0508338, 2005.Google Scholar

[43]

M. Leok and T. Shingel, Prolongation-collocation variational integrators, IMA J. Numer. Anal., 32 (2012), 1194-1216. doi: 10.1093/imanum/drr042. Google Scholar

[44]

A. Lewis, Reduction of Simple Mechanical Systems, Mechanics and Symmetry Seminars, University of Warwick, https://mast.queensu.ca/~andrew/, 1997.Google Scholar

[45]

S. LeyendeckerS. Ober-BlobaumJ. Marsden and M. Ortiz, Discrete mechanics and optimal control for constrained systems, Optim. Control, Appl. Methods, 316 (2010), 505-528. doi: 10.1002/oca.912. Google Scholar

[46]

J. C. MarreroD. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian Mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348. doi: 10.1088/0951-7715/19/6/006. Google Scholar

[47]

J. C. MarreroD. Martín de Diego and A. Stern, Symplectic groupies and discrete constrained Lagrangian mechanics, Discrete and Continuous Mechanical Systems, Serie A, 35 (2015), 367-397. doi: 10.3934/dcds.2015.35.367. Google Scholar

[48]

J. E. Marsden and J. Scheurle, The Reduced Euler-Lagrange equations, Fields Institute Communications, 1 (1993), 139-164. Google Scholar

[49]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514. doi: 10.1017/S096249290100006X. Google Scholar

[50]

J. Marsden and J. Wendlandt, Mechanical Integrators Derived from a Discrete Variational Principle, Physica D, 106 (1997), 223-246. doi: 10.1016/S0167-2789(97)00051-1. Google Scholar

[51]

J. E. MarsdenS. Pekarsky and S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999), 1647-1662. doi: 10.1088/0951-7715/12/6/314. Google Scholar

[52]

J. E. MarsdenS. Pekarsky and S. Shkoller, Symmetry reduction of discrete Lagrangian mechanics on Lie groups, Journal of Geometry and Physics, 36 (2000), 140-151. doi: 10.1016/S0393-0440(00)00018-8. Google Scholar

[53]

J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243. doi: 10.1007/BF02352494. Google Scholar

[54]

S. Ober-BlobaumO. Junge and J. E. Marsden, Discrete mechanics and optimal control: An analysis, ESAIM Control Optim. Calc. Var., 17 (2011), 322-352. doi: 10.1051/cocv/2010012. Google Scholar

[55]

S. Ober-Blobaum, Galerkin variational integrators and modified symplectic Runge-Kutta methods, IMA J. Numer. Anal., 37 (2017), 375-406. doi: 10.1093/imanum/drv062. Google Scholar

[56]

T. Ohsawa, Symmetry reduction of optimal control systems and principal connections, SIAM Journal on Control and Optimization, 51 (2013), 96-120. doi: 10.1137/110835219. Google Scholar

[57]

J. P. Ostrowski, Computing Reduced Equations for Robotic Systems with Constraints and Symmetries, IEEE Transactions on robotic and automation, 1999.Google Scholar

[58]

G. W. Patrick and C. Cuell, Error analysis of variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264. doi: 10.1007/s00211-009-0245-3. Google Scholar

[1]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[2]

Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014

[3]

Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193

[4]

Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343

[5]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[6]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[7]

Leonardo Colombo, David Martín de Diego. Optimal control of underactuated mechanical systems with symmetries. Conference Publications, 2013, 2013 (special) : 149-158. doi: 10.3934/proc.2013.2013.149

[8]

Anthony M. Bloch, Melvin Leok, Jerrold E. Marsden, Dmitry V. Zenkov. Controlled Lagrangians and stabilization of discrete mechanical systems. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 19-36. doi: 10.3934/dcdss.2010.3.19

[9]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist. Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. Journal of Geometric Mechanics, 2013, 5 (1) : 1-38. doi: 10.3934/jgm.2013.5.1

[10]

Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399

[11]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

[12]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[13]

Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109

[14]

Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164

[15]

Enrico Gerlach, Charlampos Skokos. Comparing the efficiency of numerical techniques for the integration of variational equations. Conference Publications, 2011, 2011 (Special) : 475-484. doi: 10.3934/proc.2011.2011.475

[16]

Roberto Alicandro, Andrea Braides, Marco Cicalese. Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Networks & Heterogeneous Media, 2006, 1 (1) : 85-107. doi: 10.3934/nhm.2006.1.85

[17]

S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271

[18]

Anthony M. Bloch, Rohit Gupta, Ilya V. Kolmanovsky. Neighboring extremal optimal control for mechanical systems on Riemannian manifolds. Journal of Geometric Mechanics, 2016, 8 (3) : 257-272. doi: 10.3934/jgm.2016007

[19]

Firdaus E. Udwadia, Thanapat Wanichanon. On general nonlinear constrained mechanical systems. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 425-443. doi: 10.3934/naco.2013.3.425

[20]

Leo T. Butler. A note on integrable mechanical systems on surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1873-1878. doi: 10.3934/dcds.2014.34.1873

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (38)
  • HTML views (85)
  • Cited by (0)

[Back to Top]