We study in this article a stochastic 3D globally modified Allen-Cahn-Navier-Stokes model in a bounded domain. We prove the existence and uniqueness of a strong solutions. The proof relies on a Galerkin approximation, as well as some compactness results. Furthermore, we discuss the relation between the stochastic 3D globally modified Allen-Cahn-Navier-Stokes equations and the stochastic 3D Allen-Cahn-Navier-Stokes equations, by proving a convergence theorem. More precisely, as a parameter $N$ tends to infinity, a subsequence of solutions of the stochastic 3D globally modified Allen-Cahn-Navier-Stokes equations converges to a weak martingale solution of the stochastic 3D Allen-Cahn-Navier-Stokes equations.
Citation: |
A. Bensoussan
, Stochastic Navier-Stokes equations, Acta Appl. Math., 38 (1995)
, 267-304.
doi: 10.1007/BF00996149.![]() ![]() ![]() |
|
T. Blesgen
, A generalization of the Navier-Stokes equation to two-phase flow, Physica D (Applied Physics), 32 (1999)
, 1119-1123.
![]() |
|
D. Breit
, E. Feireisl
and M. Hofmanová
, Incompressible limit for compressible fluids with stochastic forcing, Arch. Ration. Mech. Anal., 222 (2016)
, 895-926.
doi: 10.1007/s00205-016-1014-y.![]() ![]() ![]() |
|
Z. Brzeźiak
, W Liu
and J. Zhu
, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014)
, 283-310.
doi: 10.1016/j.nonrwa.2013.12.005.![]() ![]() ![]() |
|
Z. Brzeźniak
, E. Hausenblas
and J. Zhu
, 2D stochastic Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013)
, 122-139.
doi: 10.1016/j.na.2012.10.011.![]() ![]() ![]() |
|
G. Caginalp
, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986)
, 205-245.
doi: 10.1007/BF00254827.![]() ![]() ![]() |
|
T. Caraballo
, J. Real
and P. E. Kloeden
, Unique strong solutions and V-attractors of a three dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 6 (2006)
, 411-436.
doi: 10.1515/ans-2006-0304.![]() ![]() ![]() |
|
S. Chen
, C. Foias
, D. D. Holm
, E. Olson
, E. S. Titi
and S. Wynne
, The Camassa-Holm equations as a closure model for turbulent channel and pipe flows, Phys. Rev. Lett., 81 (1998)
, 5338-5341.
doi: 10.1103/PhysRevLett.81.5338.![]() ![]() ![]() |
|
S. Chen
, C. Foias
, D. D. Holm
, E. Olson
, E. S. Titi
and S. Wynne
, The Camassa-Holm equations and turbulence, Physica D, 133 (1999)
, 49-65.
doi: 10.1016/S0167-2789(99)00098-6.![]() ![]() ![]() |
|
S. Chen
, C. Foias
, D. D. Holm
, E. Olson
, E. S. Titi
and S. Wynne
, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids, 11 (1999)
, 2343-2353.
doi: 10.1063/1.870096.![]() ![]() ![]() |
|
S. Chen
, D. D. Holm
, L. G. Margolin
and R. Zhang
, Direct numerical simulations of the Navier-Stokes alpha model, Physica D, 133 (1999)
, 66-83.
doi: 10.1016/S0167-2789(99)00099-8.![]() ![]() ![]() |
|
A. Debussche
, N. Glatt-Holtz
and R. Temam
, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011)
, 1123-1144.
doi: 10.1016/j.physd.2011.03.009.![]() ![]() ![]() |
|
G. Deugoué
and T. Tachim Medjo
, The stochastic 3D globally modified Navier-Stokes Equations: Existence, Uniqueness and Asymptotic behavior, Commun. Pure Appl. Anal., 17 (2018)
, 2593-2621.
doi: 10.3934/cpaa.2018123.![]() ![]() ![]() |
|
E. Feireisl
, H. Petzeltová
, E. Rocca
and G. Schimperna
, Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., 20 (2010)
, 1129-1160.
doi: 10.1142/S0218202510004544.![]() ![]() ![]() |
|
F. Flandoli
and D. Gatarek
, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995)
, 307-391.
doi: 10.1007/BF01192467.![]() ![]() ![]() |
|
F. Flandoli
and B. Maslowski
, Ergodicity of the 2D Navier-Stokes equation under random perturbations, Commun. Math. Phys., 171 (1995)
, 119-141.
doi: 10.1007/BF02104513.![]() ![]() ![]() |
|
C. Gal
and M. Grasselli
, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010)
, 401-436.
doi: 10.1016/j.anihpc.2009.11.013.![]() ![]() ![]() |
|
C. G. Gal
and M. Grasselli
, Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28 (2010)
, 1-39.
doi: 10.3934/dcds.2010.28.1.![]() ![]() ![]() |
|
C. G. Gal
and M. Grasselli
, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010)
, 655-678.
doi: 10.1007/s11401-010-0603-6.![]() ![]() ![]() |
|
N. Glatz-Holtz
and M. Ziane
, Strong pathwise solutions of the stochastic Navier-Stokes system, Advances in Differential Equations, 14 (2009)
, 567-600.
![]() ![]() |
|
P. C. Hohenberg
and B. I. Halperin
, Theory of dynamical critical phenomena, Rev. Modern Phys., 49 (1977)
, 435-479.
![]() |
|
D. D. Holm
, J. E. Marsden
and T. S. Ratiu
, The Euler-Poincaré equations and semi-direct products with applications to continuum theories, Adv. Math., 137 (1998)
, 1-81.
doi: 10.1006/aima.1998.1721.![]() ![]() ![]() |
|
D. D. Holm
, J. E. Marsden
and T. S. Ratiu
, Euler-Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 349 (1998)
, 4173-4177.
![]() |
|
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd edition, North-Holland, Kodansha, 1989.
![]() ![]() |
|
J. E. Marsden
and S. Shkoller
, Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-α) equations on bounded domains, Phil. Trans. R. Soc. Lond. A, 359 (2001)
, 1449-1468.
doi: 10.1098/rsta.2001.0852.![]() ![]() ![]() |
|
A. Onuki
, Phase transition of fluids in shear flow, J. Phys. Condens. Matter, 9 (1997)
, 6119-6157.
![]() |
|
G. Da Prato
and A. Debussche
, Ergodicity for the 3D stochastic Navier-Stokes equations, J. Math. Pures Appl., 82 (2003)
, 877-947.
doi: 10.1016/S0021-7824(03)00025-4.![]() ![]() ![]() |
|
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9781107295513.![]() ![]() ![]() |
|
C. Prévôt and M. Röckner, A concise Course on Stochastic Partial Differential Equations, Springer-Verlag, 2007.
![]() ![]() |
|
M. R${\ddot o}$ckner
and T. Zhang
, Stochastic 3D tamed Navier-Stokes equations: Existence, Uniqueness and small time large deviation principles, J. Differential Equations, 252 (2012)
, 716-744.
doi: 10.1016/j.jde.2011.09.030.![]() ![]() ![]() |
|
M. Romito
, The uniqueness of weak solutions of the globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 9 (2009)
, 425-427.
doi: 10.1515/ans-2009-0209.![]() ![]() ![]() |
|
A. V. Skorohod I. I. Gikhman, Stochastic Differential Equations, Springer-Verlag, Berlin, 1972.
![]() ![]() |
|
T. Tachim Medjo
, A non-autonomous two-phase flow model with oscillating external force and its global attractor, Nonlinear Anal., 75 (2012)
, 226-243.
doi: 10.1016/j.na.2011.08.024.![]() ![]() ![]() |
|
T. Tachim Medjo
, Pullback attractors for a non-autonomous homogeneous two-phase flow model, J. Differential Equations, 253 (2012)
, 1779-1806.
doi: 10.1016/j.jde.2012.06.004.![]() ![]() ![]() |
|
T. Tachim Medjo
, Unique strong and V-attractor of a three dimensional globally modified two-phase flow model, Ann. Mat. Pura Appl., 197 (2018)
, 843-868.
doi: 10.1007/s10231-017-0706-8.![]() ![]() ![]() |
|
T. Tachim Medjo
and F. Tone
, Long time stability of a classical efficient scheme for an incompressible two-phase flow model, Asymptot. Anal., 95 (2015)
, 101-127.
doi: 10.3233/ASY-151325.![]() ![]() ![]() |
|
R. Temam, Infinite Dynamical Systems in Mechanics and Physics, volume 68. Appl. Math. Sci., Springer-Verlag, New York, second edition, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
|
M. I. Vishik
, A. I. Komech
and A. V. Fursikov
, Some mathematical problems of statistical hydromechanics, Uspekhi Mat. Nauk, 34 (1979)
, 135-210,256.
![]() ![]() |