In this paper, we consider the existence of non-trivial solutions for the following equation
$\mathcal{H}_{0J}u = |u|^{p-2}u+λ u\;\;\;\;{\rm in}\,\,\mathbb{R}^3,\;\;\;\;\;\;\;\;(1)$
where
$E_ρ = \inf\{E(u)|u∈ H^{J}(\mathbb{R}^3):\,\,\|u\|_{L^2(\mathbb{R}^3)} = ρ\}.$
We show that problem (1) admits at least a solution provided that in the case
Citation: |
J. Bellazzini
and G. Siciliano
, Stable standing waves for a class of nonlinear SchrödingerPoisson equations, Z. Angew. Math. Phys., 62 (2011)
, 267-280.
doi: 10.1007/s00033-010-0092-1.![]() ![]() ![]() |
|
J. Bellazzini
and G. Siciliano
, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011)
, 2486-2507.
doi: 10.1016/j.jfa.2011.06.014.![]() ![]() ![]() |
|
R. Carles, W. Lucha and E. Moulay, Higher-order Schrödinger and Hartree-Fock equations, J. Math. Phys., 56 (2015), 122301, 17 pp.
doi: 10.1063/1.4936646.![]() ![]() ![]() |
|
R. Carles and E. Moulay, Higher order Schrödinger equations, J. Phys. A, 45 (2012), 395304, 11 pp.
doi: 10.1088/1751-8113/45/39/395304.![]() ![]() ![]() |
|
X. Chen
and J. Yang
, Regularity and symmetry of solutions of an integral equation, Acta Math. Sci., 32 (2012)
, 1759-1780.
doi: 10.1016/S0252-9602(12)60139-8.![]() ![]() ![]() |
|
H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Study ed. Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987.
![]() ![]() |
|
P. A. M. Dirac
, The quantum theory of the electron, Proc. R. Soc. A, 117 (1928)
, 610-624.
![]() |
|
Y. Ebihara
and T. Schonbek
, On the (non)compactness of the radial Sobolev spaces, Hiroshima Math. J., 16 (1986)
, 665-669.
![]() ![]() |
|
I. Ekeland
, On the variational principle, J. Math. Anal. Appl., 47 (1974)
, 324-353.
doi: 10.1016/0022-247X(74)90025-0.![]() ![]() ![]() |
|
A. N. Gorban
and I. V. Karlin
, Schrödinger operator in an overfull set, Europhys. Lett., 42 (2007)
, 113-118.
![]() |
|
R. L. Hall
and W. Lucha
, Schrödinger upper bounds to semirelativistic eigenvalues, J. Phys. A, 38 (2005)
, 7997-8002.
doi: 10.1088/0305-4470/38/37/005.![]() ![]() ![]() |
|
R. L. Hall
and W. Lucha
, Schrödinger secant lower bounds to semirelativistic eigenvalues, Int. J. Mod. Phys. A, 22 (2007)
, 1899-1904.
doi: 10.1142/S0217751X07036312.![]() ![]() ![]() |
|
B. Helffer, Semi-Classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics Vol. 1336, Springer-Verlag, Berlin, 1988.
doi: 10.1007/BFb0078115.![]() ![]() ![]() |
|
Y. Karpeshina and R. Shterenberg, Extended states for polyharmonico perators with quasiperiodic potentials in dimension two, J. Math. Phys., 53 (2012), 103512, 8pp.
doi: 10.1063/1.4754832.![]() ![]() ![]() |
|
J. M. Kim
, A. Arnold
and X. Yao
, Global estimates of fundamental solutions for higher-order Schrödinger equations, Monatsh. Math., 168 (2012)
, 253-266.
doi: 10.1007/s00605-011-0350-0.![]() ![]() ![]() |
|
E. Lenzmann
, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007)
, 43-64.
doi: 10.1007/s11040-007-9020-9.![]() ![]() ![]() |
|
E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematicas 14, AMS, 2001.
doi: 10.1090/gsm/014.![]() ![]() ![]() |
|
P. L. Lions
, The concentration-compactness principle in the Calculus of Variations. The locally compact case. Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984)
, 109-145.
doi: 10.1016/S0294-1449(16)30428-0.![]() ![]() ![]() |
|
W. Lucha and F. Schöberl, Semirelativistic Bound-State Equations: Trivial Considerations, EPJ Web of Conferences, 80 (2014), 00049.
![]() |
|
W. Lucha and F. Schöberl, The spinless relativistic Woods Saxon problem, International Journal of Modern Physics A, 29 (2014), 1450057, 15pp.
doi: 10.1142/S0217751X14500572.![]() ![]() ![]() |
|
J. Tan
, Y. Wang
and J. Yang
, Nonlinear Fractional field equations, Nonlinear Anal. TMA, 75 (2012)
, 2098-2110.
doi: 10.1016/j.na.2011.10.010.![]() ![]() ![]() |