Let $(X,d,f)$ be a topological dynamical system, where $(X,d)$ is a compact metric space and $f:X \to X$ is a continuous map. We define $n$-ordered empirical measure of $x \in X$ by
$\mathscr{E}_n(x) = \frac{1}{n}\sum\limits_{i = 0}^{n-1}δ_{f^ix},$
where $δ_y$ is the Dirac mass at $y$. Denote by $V(x)$ the set of limit measures of the sequence of measures $\mathscr{E}_n(x)$. In this paper, we obtain conditional variational principles for the topological entropy of
$\Delta_{sub}(I): = \left\{ {x \in X:V(x)\subset I} \right\},$
and
$\Delta_{cap}(I): = \left\{ {x \in X:V(x)\cap I≠\emptyset } \right\}.$
in a dynamical system with the pseudo-orbit tracing property, where $I$ is a certain subset of $\mathscr M_{\rm inv}(X,f)$.
Citation: |
N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-Holland, Amsterdam, 1994.
![]() ![]() |
|
J. Bochi
, Genericity of zero Lyapunov exponents, Ergodic Theory Dynam. Systems, 22 (2002)
, 1667-1696.
doi: 10.1017/S0143385702001165.![]() ![]() ![]() |
|
R. Bowen
, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973)
, 125-136.
doi: 10.1090/S0002-9947-1973-0338317-X.![]() ![]() ![]() |
|
L. Chen
and S. Li
, Shadowing property for inverse limit spaces, Proc. Amer. Math. Soc., 115 (1992)
, 573-580.
doi: 10.1090/S0002-9939-1992-1097338-X.![]() ![]() ![]() |
|
E. Coven
, I. Kan
and J. Yorke
, Pseudo-orbit shadowing in the family of tents maps, Trans. Amer. Math. Soc., 308 (1988)
, 227-241.
doi: 10.1090/S0002-9947-1988-0946440-2.![]() ![]() ![]() |
|
M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics, vol. 527, Springer-Verlag, Berlin-New York, 1976.
doi: 10.1007/BFb0082364.![]() ![]() ![]() |
|
Y. Dong
, P. Oprocha
and X. Tian
, On the irregular points for systems with the shadowing property, Ergodic Theory Dynam. Systems, 38 (2018)
, 2108-2131.
doi: 10.1017/etds.2016.126.![]() ![]() ![]() |
|
T. Downarowicz, Survey of odometers and Toeplitz flows, in Algebraic and Topological Dynamics, Contemp. Math. 385, Amer. Math. Soc., Providence, RI, (2005), 7-37.
doi: 10.1090/conm/385.![]() ![]() ![]() |
|
A. Katok
, Lyapunov exponents, entropy and periodic points for diffeomorphism, Inst. Hautes Études Sci. Publ. Math., 51 (1980)
, 137-173.
doi: 10.1007/BF02684777.![]() ![]() ![]() |
|
D. Kwietniak, M. Lacka and P. Oprocha, A panorama of specification-like properties and their consequences, in Dynamics and Numbers, Contemp. Math. 669, Amer. Math. Soc., Providence, RI, (2016), 155-186.
doi: 10.1090/conm/669.![]() ![]() ![]() |
|
J. Li
and P. Oprocha
, Properties of invariant measures in dynamical systems with shadowing property, Ergodic Theory Dynam. Systems, 38 (2018)
, 2257-2294.
doi: 10.1017/etds.2016.125.![]() ![]() ![]() |
|
V. Mijović
and L. Olsen
, Dynamical multifractal zeta-functions and fine multifractal spectra of graph-directed self-conformal constructions, Ergodic Theory Dynam. Systems, 36 (2016)
, 1922-1971.
doi: 10.1017/etds.2014.140.![]() ![]() ![]() |
|
L. Olsen
, Divergence points of deformed empirical measures, Math. Res. Lett., 9 (2002)
, 701-713.
doi: 10.4310/MRL.2002.v9.n6.a1.![]() ![]() ![]() |
|
L. Olsen
, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl., 82 (2003)
, 1591-1649.
doi: 10.1016/j.matpur.2003.09.007.![]() ![]() ![]() |
|
L. Olsen
and S. Winter
, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. Lond. Math. Soc., 67 (2003)
, 103-122.
doi: 10.1112/S0024610702003630.![]() ![]() ![]() |
|
Y. Pesin, Dimension Theory in Dynamical Systems. Contemporary Views and Applications, University of Chicago Press, Chicago, 1997.
doi: 10.7208/chicago/9780226662237.001.0001.![]() ![]() ![]() |
|
C. Pfister
and W. Sullivan
, Large deviations estimates for dynamical systems without the specification property. Applications to the $\beta $-shifts, Nonlinearity, 18 (2005)
, 237-261.
doi: 10.1088/0951-7715/18/1/013.![]() ![]() ![]() |
|
C. Pfister
and W. Sullivan
, On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, 27 (2007)
, 929-956.
doi: 10.1017/S0143385706000824.![]() ![]() ![]() |
|
F. Takens
and E. Verbitskiy
, On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dynam. Systems, 23 (2003)
, 317-348.
doi: 10.1017/S0143385702000913.![]() ![]() ![]() |
|
X. Tian
and P. Varandas
, Topological entropy of level sets of empirical measures for nonuniformly expanding maps, Discrete Continuous Dynam. Systems - A, 37 (2017)
, 5407-5431.
doi: 10.3934/dcds.2017235.![]() ![]() ![]() |
|
X. Zhou
and E. Chen
, Multifractal analysis for the historic set in topological dynamical systems, Nonlinearity, 26 (2013)
, 1975-1997.
doi: 10.1088/0951-7715/26/7/1975.![]() ![]() ![]() |