\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The conditional variational principle for maps with the pseudo-orbit tracing property

  • * Corresponding author.

    * Corresponding author.
Abstract Full Text(HTML) Related Papers Cited by
  • Let $(X,d,f)$ be a topological dynamical system, where $(X,d)$ is a compact metric space and $f:X \to X$ is a continuous map. We define $n$-ordered empirical measure of $x \in X$ by

    $\mathscr{E}_n(x) = \frac{1}{n}\sum\limits_{i = 0}^{n-1}δ_{f^ix},$

    where $δ_y$ is the Dirac mass at $y$. Denote by $V(x)$ the set of limit measures of the sequence of measures $\mathscr{E}_n(x)$. In this paper, we obtain conditional variational principles for the topological entropy of

    $\Delta_{sub}(I): = \left\{ {x \in X:V(x)\subset I} \right\},$

    and

    $\Delta_{cap}(I): = \left\{ {x \in X:V(x)\cap I≠\emptyset } \right\}.$

    in a dynamical system with the pseudo-orbit tracing property, where $I$ is a certain subset of $\mathscr M_{\rm inv}(X,f)$.

    Mathematics Subject Classification: Primary: 37B40; Secondary: 37C45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-Holland, Amsterdam, 1994.
      J. Bochi , Genericity of zero Lyapunov exponents, Ergodic Theory Dynam. Systems, 22 (2002) , 1667-1696.  doi: 10.1017/S0143385702001165.
      R. Bowen , Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973) , 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.
      L. Chen  and  S. Li , Shadowing property for inverse limit spaces, Proc. Amer. Math. Soc., 115 (1992) , 573-580.  doi: 10.1090/S0002-9939-1992-1097338-X.
      E. Coven , I. Kan  and  J. Yorke , Pseudo-orbit shadowing in the family of tents maps, Trans. Amer. Math. Soc., 308 (1988) , 227-241.  doi: 10.1090/S0002-9947-1988-0946440-2.
      M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics, vol. 527, Springer-Verlag, Berlin-New York, 1976. doi: 10.1007/BFb0082364.
      Y. Dong , P. Oprocha  and  X. Tian , On the irregular points for systems with the shadowing property, Ergodic Theory Dynam. Systems, 38 (2018) , 2108-2131.  doi: 10.1017/etds.2016.126.
      T. Downarowicz, Survey of odometers and Toeplitz flows, in Algebraic and Topological Dynamics, Contemp. Math. 385, Amer. Math. Soc., Providence, RI, (2005), 7-37. doi: 10.1090/conm/385.
      A. Katok , Lyapunov exponents, entropy and periodic points for diffeomorphism, Inst. Hautes Études Sci. Publ. Math., 51 (1980) , 137-173.  doi: 10.1007/BF02684777.
      D. Kwietniak, M. Lacka and P. Oprocha, A panorama of specification-like properties and their consequences, in Dynamics and Numbers, Contemp. Math. 669, Amer. Math. Soc., Providence, RI, (2016), 155-186. doi: 10.1090/conm/669.
      J. Li  and  P. Oprocha , Properties of invariant measures in dynamical systems with shadowing property, Ergodic Theory Dynam. Systems, 38 (2018) , 2257-2294.  doi: 10.1017/etds.2016.125.
      V. Mijović  and  L. Olsen , Dynamical multifractal zeta-functions and fine multifractal spectra of graph-directed self-conformal constructions, Ergodic Theory Dynam. Systems, 36 (2016) , 1922-1971.  doi: 10.1017/etds.2014.140.
      L. Olsen , Divergence points of deformed empirical measures, Math. Res. Lett., 9 (2002) , 701-713.  doi: 10.4310/MRL.2002.v9.n6.a1.
      L. Olsen , Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl., 82 (2003) , 1591-1649.  doi: 10.1016/j.matpur.2003.09.007.
      L. Olsen  and  S. Winter , Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. Lond. Math. Soc., 67 (2003) , 103-122.  doi: 10.1112/S0024610702003630.
      Y. Pesin, Dimension Theory in Dynamical Systems. Contemporary Views and Applications, University of Chicago Press, Chicago, 1997. doi: 10.7208/chicago/9780226662237.001.0001.
      C. Pfister  and  W. Sullivan , Large deviations estimates for dynamical systems without the specification property. Applications to the $\beta $-shifts, Nonlinearity, 18 (2005) , 237-261.  doi: 10.1088/0951-7715/18/1/013.
      C. Pfister  and  W. Sullivan , On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, 27 (2007) , 929-956.  doi: 10.1017/S0143385706000824.
      F. Takens  and  E. Verbitskiy , On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dynam. Systems, 23 (2003) , 317-348.  doi: 10.1017/S0143385702000913.
      X. Tian  and  P. Varandas , Topological entropy of level sets of empirical measures for nonuniformly expanding maps, Discrete Continuous Dynam. Systems - A, 37 (2017) , 5407-5431.  doi: 10.3934/dcds.2017235.
      X. Zhou  and  E. Chen , Multifractal analysis for the historic set in topological dynamical systems, Nonlinearity, 26 (2013) , 1975-1997.  doi: 10.1088/0951-7715/26/7/1975.
  • 加载中
SHARE

Article Metrics

HTML views(317) PDF downloads(242) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return