January  2019, 39(1): 483-502. doi: 10.3934/dcds.2019020

Uniqueness of limit cycles for quadratic vector fields

Departamento de Matemáticas, Universidad de Extremadura, Badajoz 06006, Spain

* Corresponding author: J. L. Bravo

Received  April 2018 Published  October 2018

Fund Project: The first two authors were partially supported by AEI/FEDER UE grant number MTM 2011-22751 and Junta de Extremadura grant GR15055 (Junta de Extremadura/FEDER funds). The third author was partially supported by the research group FQM-024 (Junta de Extremadura/FEDER funds) and by the project MTM2015-65764-C3-1-P (MINECO/FEDER, UE). The fourth author was partially supported by Junta de Extremadura grant GR15055 (Junta de Extremadura/FEDER funds).

This article deals with the study of the number of limit cycles surrounding a critical point of a quadratic planar vector field, which, in normal form, can be written as $x' = a_1 x-y-a_3x^2+(2 a_2+a_5)xy + a_6 y^2$, $y' = x+a_1 y + a_2x^2+(2 a_3+a_4)xy -a_2y^2$. In particular, we study the semi-varieties defined in terms of the parameters $a_1, a_2, ..., a_6$ where some classical criteria for the associated Abel equation apply. The proofs will combine classical ideas with tools from computational algebraic geometry.

Citation: José Luis Bravo, Manuel Fernández, Ignacio Ojeda, Fernando Sánchez. Uniqueness of limit cycles for quadratic vector fields. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 483-502. doi: 10.3934/dcds.2019020
References:
[1]

M. J. ÁlvarezA. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differential Equations, 234 (2007), 161-176.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[2]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems, Proc. Roy. Soc. Edinburgh Sect. A, 105 (1987), 129-152.  doi: 10.1017/S0308210500021971.  Google Scholar

[3]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, Halsted Press (A division of John Wiley & Sons), Israel Program for Scientific Translations Jerusalem-London, 1973.  Google Scholar

[4]

O. Bachmann, G.-M. Greuel, C. Lossen, G. Pfister and H. Schönemann, A Singular Introduction to Commutative Algebra, Springer, Berlin, 2007. Google Scholar

[5]

N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or centre type, American Math. Soc. Translation, 1954 (1954), 19pp.  Google Scholar

[6]

J. L. BravoM. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs, Int. J. Bif. Chaos, 19 (2009), 3869-3876.  doi: 10.1142/S0218127409025195.  Google Scholar

[7]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions, J. Math. Anal. Appl., 342 (2008), 931-942.  doi: 10.1016/j.jmaa.2007.12.060.  Google Scholar

[8]

L. A. Cherkas, Number of limit cycles of an autonomous second-order system, Diff. Eq., 5 (1976), 666-668.   Google Scholar

[9]

B. CollA. Gasull and J. Llibre, Some theorems on the existence, uniqueness and non existence of limit cycles for quadratic systems, J. Differential Equations, 67 (1987), 372-399.  doi: 10.1016/0022-0396(87)90133-1.  Google Scholar

[10]

D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Second Edition, Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997. doi: 10.1007/978-3-319-16721-3.  Google Scholar

[11]

W. Decker, G. M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-0 — A Computer Algebra System for Polynomial Computations, http://www.singular.uni-kl.de (2016). Google Scholar

[12]

G. F. D. Duff, Limit-cycles and rotated vector fields, Ann. of Math., 57 (1953), 15-31.  doi: 10.2307/1969724.  Google Scholar

[13]

H. Dulac, Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un centre, Bull. Soc. Math. France, 32 (1908), 230-252.   Google Scholar

[14]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations, Int. J. Bif. Chaos, 16 (2006), 3737-3745.  doi: 10.1142/S0218127406017130.  Google Scholar

[15]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 21 (1990), 1235-1244.  doi: 10.1137/0521068.  Google Scholar

[16]

P. GianniB. Trager and G. Zacharias, Gröbner bases and primary decomposition of polynomial ideals, Computational Aspects of Commutative Algebra, J. Symbolic Comput., 6 (1988), 149-167.  doi: 10.1016/S0747-7171(88)80040-3.  Google Scholar

[17]

J. Huang and Y. Zhao, Periodic solutions for equation $x' = A(t)x^m + B(t)x^n + C(t)x^l$ with $A(t)$ and $B(t)$ changing signs, J. Differential Equations, 253 (2012), 73-99.  doi: 10.1016/j.jde.2012.03.021.  Google Scholar

[18]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{dt} = \sum_{j = 0}^n a_j(t)x^j$, $0≤ t≤ 1$, for which $x(0) = x(1)$, Inv. Math., 59 (1980), 67-76.  doi: 10.1007/BF01390315.  Google Scholar

[19]

J. Llibre and Xiang Zhang, The non-existence, existence and uniqueness of limit cycles for quadratic polynomial differential systems, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, (2017), 1-14.  doi: 10.1017/S0308210517000221.  Google Scholar

[20]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc., 20 (1979), 277-286.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[21]

D. Mumford, Algebraic Geometry I: Complex Projective Varieties, Reprint of the 1976 Edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[22]

A. A. Panov, The number of periodic solutions of polynomial differential equations, Math. Notes, 64 (1998), 622-628.  doi: 10.1007/BF02316287.  Google Scholar

[23]

L. M. Perko, Differential Equations and Dynamical Systems, Third edition, Texts in Applied Mathematics 7, Springer–Verlag, New York [etc.], 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[24]

V. A. Pliss, Non-Local Problems of the Theory of Oscillations, Academic Press, New York, 1966.  Google Scholar

[25]

V. G. Romanovski and D. S. Shafer, The Centre and Cyclicity Problems. A Computational Algebra Approach, Birkhäuser, 2009. doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[26]

J. Sotomayor, Curvas Definidas Por Equaçöes Diferenciais no Plano, IMPA, Rio de Janeiro, 1981.  Google Scholar

show all references

References:
[1]

M. J. ÁlvarezA. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations, J. Differential Equations, 234 (2007), 161-176.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[2]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems, Proc. Roy. Soc. Edinburgh Sect. A, 105 (1987), 129-152.  doi: 10.1017/S0308210500021971.  Google Scholar

[3]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, Halsted Press (A division of John Wiley & Sons), Israel Program for Scientific Translations Jerusalem-London, 1973.  Google Scholar

[4]

O. Bachmann, G.-M. Greuel, C. Lossen, G. Pfister and H. Schönemann, A Singular Introduction to Commutative Algebra, Springer, Berlin, 2007. Google Scholar

[5]

N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or centre type, American Math. Soc. Translation, 1954 (1954), 19pp.  Google Scholar

[6]

J. L. BravoM. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs, Int. J. Bif. Chaos, 19 (2009), 3869-3876.  doi: 10.1142/S0218127409025195.  Google Scholar

[7]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions, J. Math. Anal. Appl., 342 (2008), 931-942.  doi: 10.1016/j.jmaa.2007.12.060.  Google Scholar

[8]

L. A. Cherkas, Number of limit cycles of an autonomous second-order system, Diff. Eq., 5 (1976), 666-668.   Google Scholar

[9]

B. CollA. Gasull and J. Llibre, Some theorems on the existence, uniqueness and non existence of limit cycles for quadratic systems, J. Differential Equations, 67 (1987), 372-399.  doi: 10.1016/0022-0396(87)90133-1.  Google Scholar

[10]

D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Second Edition, Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997. doi: 10.1007/978-3-319-16721-3.  Google Scholar

[11]

W. Decker, G. M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-0 — A Computer Algebra System for Polynomial Computations, http://www.singular.uni-kl.de (2016). Google Scholar

[12]

G. F. D. Duff, Limit-cycles and rotated vector fields, Ann. of Math., 57 (1953), 15-31.  doi: 10.2307/1969724.  Google Scholar

[13]

H. Dulac, Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un centre, Bull. Soc. Math. France, 32 (1908), 230-252.   Google Scholar

[14]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations, Int. J. Bif. Chaos, 16 (2006), 3737-3745.  doi: 10.1142/S0218127406017130.  Google Scholar

[15]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 21 (1990), 1235-1244.  doi: 10.1137/0521068.  Google Scholar

[16]

P. GianniB. Trager and G. Zacharias, Gröbner bases and primary decomposition of polynomial ideals, Computational Aspects of Commutative Algebra, J. Symbolic Comput., 6 (1988), 149-167.  doi: 10.1016/S0747-7171(88)80040-3.  Google Scholar

[17]

J. Huang and Y. Zhao, Periodic solutions for equation $x' = A(t)x^m + B(t)x^n + C(t)x^l$ with $A(t)$ and $B(t)$ changing signs, J. Differential Equations, 253 (2012), 73-99.  doi: 10.1016/j.jde.2012.03.021.  Google Scholar

[18]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{dt} = \sum_{j = 0}^n a_j(t)x^j$, $0≤ t≤ 1$, for which $x(0) = x(1)$, Inv. Math., 59 (1980), 67-76.  doi: 10.1007/BF01390315.  Google Scholar

[19]

J. Llibre and Xiang Zhang, The non-existence, existence and uniqueness of limit cycles for quadratic polynomial differential systems, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, (2017), 1-14.  doi: 10.1017/S0308210517000221.  Google Scholar

[20]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc., 20 (1979), 277-286.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[21]

D. Mumford, Algebraic Geometry I: Complex Projective Varieties, Reprint of the 1976 Edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[22]

A. A. Panov, The number of periodic solutions of polynomial differential equations, Math. Notes, 64 (1998), 622-628.  doi: 10.1007/BF02316287.  Google Scholar

[23]

L. M. Perko, Differential Equations and Dynamical Systems, Third edition, Texts in Applied Mathematics 7, Springer–Verlag, New York [etc.], 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[24]

V. A. Pliss, Non-Local Problems of the Theory of Oscillations, Academic Press, New York, 1966.  Google Scholar

[25]

V. G. Romanovski and D. S. Shafer, The Centre and Cyclicity Problems. A Computational Algebra Approach, Birkhäuser, 2009. doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[26]

J. Sotomayor, Curvas Definidas Por Equaçöes Diferenciais no Plano, IMPA, Rio de Janeiro, 1981.  Google Scholar

Table 1.  Codimensions of the semi-varieties.
Case Point $c_p$ $c_I$
1a) $a_1=1$, $a_2=0$, $a_3=1$, $a_4=-3$, $a_5=0$, $a_6=0$. 4 4
1b) $a_1=1$, $a_2=1$, $a_3=-1$, $a_4=2$, $a_5=-4$, $a_6=1$. 4 4
2) $a_1=-1$, $a_2=\sqrt{14}$, $a_3=-2$,
$a_4=-1$, $a_5=-3 \sqrt{14}$, $a_6=0$.
3 3
3a) $a_1=-1$, $a_2=(201 + 2 \sqrt{1509})/58$,
$a_3=(-33 + 4 \sqrt{1509})/58$, $a_4=-1$,
$a_5=-16$, $a_6=(-201 - 2 \sqrt{1509})/58)$
3 3
3b) $a_1=0$, $a_2=0$, $a_3=0$, $a_4=1$, $a_5=-2$, $a_6=-1$. 5 5
4) $a_1=1$, $a_2=0$, $a_3=1/3$, $a_4=-1$, $a_5=-1$, $a_6=0$. 3 3
5a) $a_1=0$, $a_2=1$, $a_3=-15/16$,
$a_4=-53/16$, $a_5=(-941 - 31 \sqrt{7913})/512$, $a_6=1$.
1 1
5b) $a_1=0$, $a_2=(4096 - 7 \sqrt{1726})/16384$, $a_3=0$,
$a_4=-(58339673 + 28672 \sqrt{1726})/94666752$,
$a_5=-1$, $a_6=-2889/16384$.
2 2
5c) $a_1=1$, $a_2=4$, $a_3=-12$, $a_4=30$, $a_5=-15$, $a_6=1/2$ * 2
5d) $a_1=0$, $a_2=\sqrt{185}/32$, $a_3=0$,
$a_4=-1$, $a_5=-3 \sqrt{185}/32$, $a_6=-5/32$
2 2
5e) $a_1=0$, $a_2=2 \sqrt{2}$, $a_3=-1$, $a_4=0$, $a_5=-9 \sqrt{2}$, $a_6=8$ * 2
5f) $a_1=0$, $a_2=2/3$, $a_3=0$, $a_4=-1$, $a_5=-2$, $a_6=-1/3$ 3 2
5g) $a_1=0$, $a_2=1$, $a_3=-9/2$, $a_4=15/2$, $a_5=-15$, $a_6=8$ * 2
5h) $a_1=0$, $a_2=1$, $a_3=-8$, $a_4=35/2$, $a_5=-15$, $a_6=9/2$ * 2
Case Point $c_p$ $c_I$
1a) $a_1=1$, $a_2=0$, $a_3=1$, $a_4=-3$, $a_5=0$, $a_6=0$. 4 4
1b) $a_1=1$, $a_2=1$, $a_3=-1$, $a_4=2$, $a_5=-4$, $a_6=1$. 4 4
2) $a_1=-1$, $a_2=\sqrt{14}$, $a_3=-2$,
$a_4=-1$, $a_5=-3 \sqrt{14}$, $a_6=0$.
3 3
3a) $a_1=-1$, $a_2=(201 + 2 \sqrt{1509})/58$,
$a_3=(-33 + 4 \sqrt{1509})/58$, $a_4=-1$,
$a_5=-16$, $a_6=(-201 - 2 \sqrt{1509})/58)$
3 3
3b) $a_1=0$, $a_2=0$, $a_3=0$, $a_4=1$, $a_5=-2$, $a_6=-1$. 5 5
4) $a_1=1$, $a_2=0$, $a_3=1/3$, $a_4=-1$, $a_5=-1$, $a_6=0$. 3 3
5a) $a_1=0$, $a_2=1$, $a_3=-15/16$,
$a_4=-53/16$, $a_5=(-941 - 31 \sqrt{7913})/512$, $a_6=1$.
1 1
5b) $a_1=0$, $a_2=(4096 - 7 \sqrt{1726})/16384$, $a_3=0$,
$a_4=-(58339673 + 28672 \sqrt{1726})/94666752$,
$a_5=-1$, $a_6=-2889/16384$.
2 2
5c) $a_1=1$, $a_2=4$, $a_3=-12$, $a_4=30$, $a_5=-15$, $a_6=1/2$ * 2
5d) $a_1=0$, $a_2=\sqrt{185}/32$, $a_3=0$,
$a_4=-1$, $a_5=-3 \sqrt{185}/32$, $a_6=-5/32$
2 2
5e) $a_1=0$, $a_2=2 \sqrt{2}$, $a_3=-1$, $a_4=0$, $a_5=-9 \sqrt{2}$, $a_6=8$ * 2
5f) $a_1=0$, $a_2=2/3$, $a_3=0$, $a_4=-1$, $a_5=-2$, $a_6=-1/3$ 3 2
5g) $a_1=0$, $a_2=1$, $a_3=-9/2$, $a_4=15/2$, $a_5=-15$, $a_6=8$ * 2
5h) $a_1=0$, $a_2=1$, $a_3=-8$, $a_4=35/2$, $a_5=-15$, $a_6=9/2$ * 2
[1]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[2]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[3]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[4]

Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007

[5]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[6]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[7]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[8]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[9]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[10]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015

[11]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[12]

Melis Alpaslan Takan, Refail Kasimbeyli. Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2073-2095. doi: 10.3934/jimo.2020059

[13]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[14]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037

[15]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[16]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[17]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021047

[18]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[19]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[20]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (134)
  • HTML views (128)
  • Cited by (0)

[Back to Top]