We establish a symmetry result for a non-autonomous overdetermined problem associated to a sublinear fractional equation. To this purpose we prove, in particular, that the solution of the corresponding Dirichlet problem is monotonically increasing with respect to the domain. We also obtain a strong minimum principle and a boundary-point lemma for linear fractional equations that may have an independent interest.
Citation: |
H. Brézis
and L. Oswald
, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986)
, 55-64.
doi: 10.1016/0362-546X(86)90011-8.![]() ![]() ![]() |
|
X. Cabré
and Y. Sire
, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014)
, 23-53.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
|
L. Cesari, Optimization - Theory and Applications, Springer-Verlag, 1983.
doi: 10.1007/978-1-4613-8165-5.![]() ![]() ![]() |
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
J. I. Díaz
and J. E. Saá
, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987)
, 521-524.
![]() ![]() |
|
A. Erdélyi (Editor), Higher Transcendental Functions, McGraw-Hill, 1953.
![]() |
|
M. M. Fall
and S. Jarohs
, Overdetermined problems with fractional Laplacian, ESAIM Control Optim. Calc. Var., 21 (2015)
, 924-938.
doi: 10.1051/cocv/2014048.![]() ![]() ![]() |
|
A. Fiscella
, R. Servadei
and E. Valdinoci
, Density properties for fractional Sobolev spaces, Annales Academiae Scientiarum Fennicae Mathematica, 40 (2015)
, 235-253.
doi: 10.5186/aasfm.2015.4009.![]() ![]() ![]() |
|
R. K. Getoor
, First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., 101 (1961)
, 75-90.
doi: 10.1090/S0002-9947-1961-0137148-5.![]() ![]() ![]() |
|
A. Greco
, A characterization of the ellipsoid through the torsion problem, J. Appl. Math. Phys. (ZAMP), 59 (2008)
, 753-765.
doi: 10.1007/s00033-007-7040-8.![]() ![]() ![]() |
|
A. Greco
, Boundary point lemmas and overdetermined problems, J. Math. Anal. Appl., 278 (2003)
, 214-224.
doi: 10.1016/S0022-247X(02)00656-X.![]() ![]() ![]() |
|
A. Greco
, Comparison principle and constrained radial symmetry for the subdiffusive p-Laplacian, Publ. Mat., 58 (2014)
, 485-498.
doi: 10.5565/PUBLMAT_58214_24.![]() ![]() ![]() |
|
A. Greco
, Constrained radial symmetry for the infinity-Laplacian, Nonlinear Analysis: Real World Applications, 37 (2017)
, 239-248.
doi: 10.1016/j.nonrwa.2017.02.016.![]() ![]() ![]() |
|
A. Greco
, Symmetry around the origin for some overdetermined problems, Adv. Math. Sci. Appl., 13 (2003)
, 387-399.
![]() ![]() |
|
A. Greco
and R. Servadei
, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016)
, 863-885.
doi: 10.4310/MRL.2016.v23.n3.a14.![]() ![]() ![]() |
|
A. Iannizzotto
, S. Mosconi
and M. Squassina
, Hs versus C0-weighted minimizers, Nonlinear Differ. Equ. Appl., 22 (2015)
, 477-497.
doi: 10.1007/s00030-014-0292-z.![]() ![]() ![]() |
|
S. Jarohs and T. Weth, On the strong maximum principle for nonlocal operators, preprint, arXiv: 1702.08767.
![]() |
|
T. Leonori
, I. Peral
, A. Primo
and F. Soria
, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015)
, 6031-6068.
doi: 10.3934/dcds.2015.35.6031.![]() ![]() ![]() |
|
V. Mascia, Un Problema Sublineare Non Locale (Italian), Thesis. University of Cagliari, 2017.
![]() |
|
G. Molica Bisci
and V. D. Rădulescu
, Multiplicity results for elliptic fractional equations with subcritical term, Nonlinear Differ. Equ. Appl., 22 (2015)
, 721-739.
doi: 10.1007/s00030-014-0302-1.![]() ![]() ![]() |
|
X. Ros-Oton
and J. Serra
, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014)
, 275-302.
doi: 10.1016/j.matpur.2013.06.003.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015)
, 67-102.
doi: 10.1090/S0002-9947-2014-05884-4.![]() ![]() ![]() |
|
E. M. Stein
, The characterization of functions arising as potentials, Bull. Amer. Math. Soc., 67 (1961)
, 102-104.
doi: 10.1090/S0002-9904-1961-10517-X.![]() ![]() ![]() |
|
R. L. Wheeden
, On hypersingular integrals and Lebesgue spaces of differentiable functions, Trans. Amer. Math. Soc., 134 (1968)
, 421-435.
doi: 10.1090/S0002-9947-1968-0232249-1.![]() ![]() ![]() |