January  2019, 39(1): 521-551. doi: 10.3934/dcds.2019022

Non-hyperbolic behavior of geodesic flows of rank 1 surfaces

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Cidade Universitária - Ilha do Fundão, Av. Athos da Silveira Ramos 149, Rio de Janeiro 21945-909, Brazil

KG has been supported by CNPq (Brazil). She is very grateful for the comments by the referee

Received  April 2018 Revised  July 2018 Published  October 2018

We prove that for the geodesic flow of a rank 1 Riemannian surface which is expansive but not Anosov the Hausdorff dimension of the set of vectors with only zero Lyapunov exponents is large.

Citation: Katrin Gelfert. Non-hyperbolic behavior of geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 521-551. doi: 10.3934/dcds.2019022
References:
[1]

L. M. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR, 128 (1959), 873-875. Google Scholar

[2]

W. Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann., 259 (1982), 131-144. doi: 10.1007/BF01456836. Google Scholar

[3]

W. Ballmann, Lectures on Spaces of Nonpositive Curvature, vol. 25 of DMV Seminar, Birkhäuser Verlag, Basel, 1995, With an appendix by Misha Brin. doi: 10.1007/978-3-0348-9240-7. Google Scholar

[4]

R. Bowen, One-dimensional hyperbolic sets for flows, J. Differential Equations, 12 (1972), 173-179. doi: 10.1016/0022-0396(72)90012-5. Google Scholar

[5]

R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460. doi: 10.2307/2373793. Google Scholar

[6]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. Google Scholar

[7]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202. doi: 10.1007/BF01389848. Google Scholar

[8]

R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193. doi: 10.1016/0022-0396(72)90013-7. Google Scholar

[9]

K. Burns and K. Gelfert, Lyapunov spectrum for geodesic flows of rank 1 surfaces, Discrete Contin. Dyn. Syst., 34 (2014), 1841-1872. doi: 10.3934/dcds.2014.34.1841. Google Scholar

[10]

Y. Coudène and B. Schapira, Generic measures for geodesic flows on nonpositively curved manifolds, J. Éc. polytech. Math., 1 (2014), 387-408. doi: 10.5802/jep.14. Google Scholar

[11]

P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math., 46 (1973), 45–109, URL http://projecteuclid.org/euclid.pjm/1102946601. doi: 10.2140/pjm.1973.46.45. Google Scholar

[12]

P. Eberlein, When is a geodesic flow of Anosov type? Ⅰ, Ⅱ, J. Differential Geometry, 8 (1973), 437–463; ibid. 8 (1973), 565–577. doi: 10.4310/jdg/1214431801. Google Scholar

[13]

P. Eberlein, Geodesic flows in manifolds of nonpositive curvature, in Smooth Ergodic Theory and Its Applications (Seattle, WA, 1999), vol. 69 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 2001,525–571. doi: 10.1090/pspum/069/1858545. Google Scholar

[14]

D.-J. Feng and P. Shmerkin, Non-conformal repellers and the continuity of pressure for matrix cocycles, Geom. Funct. Anal., 24 (2014), 1101-1128. doi: 10.1007/s00039-014-0274-7. Google Scholar

[15]

K. GelfertF. Przytycki and M. Rams, On the Lyapunov spectrum for rational maps, Math. Ann., 348 (2010), 965-1004. doi: 10.1007/s00208-010-0508-4. Google Scholar

[16]

K. Gelfert and M. Rams, The Lyapunov spectrum of some parabolic systems, Ergodic Theory Dynam. Systems, 29 (2009), 919-940. doi: 10.1017/S0143385708080462. Google Scholar

[17]

K. Gelfert and R. O. Ruggiero, Geodesic flows modeled by expansive flows, To appear in: Proceedings of Edinburgh Mathematical Society.Google Scholar

[18]

M. Gerber and A. Wilkinson, Hölder regularity of horocycle foliations, J. Differential Geom., 52 (1999), 41-72. doi: 10.4310/jdg/1214425216. Google Scholar

[19]

E. Ghys, Flots d'Anosov sur les 3-variétés fibrées en cercles, Ergodic Theory Dynam. Systems, 4 (1984), 67-80. doi: 10.1017/S0143385700002273. Google Scholar

[20]

W. Hurewicz, Sur la dimension des produits cartesiens, Ann. of Math. (2), 36 (1935), 194-197. doi: 10.2307/1968674. Google Scholar

[21]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, vol. 54 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511809187. Google Scholar

[22]

A. O. LopesV. A. Rosas and R. O. Ruggiero, Cohomology and subcohomology problems for expansive, non Anosov geodesic flows, Discrete Contin. Dyn. Syst., 17 (2007), 403-422. doi: 10.3934/dcds.2007.17.403. Google Scholar

[23]

M. Paternain, Expansive geodesic flows on surfaces, Ergodic Theory Dynam. Systems, 13 (1993), 153-165. doi: 10.1017/S0143385700007264. Google Scholar

[24]

Y. B. Pesin and V. Sadovskaya, Multifractal analysis of conformal Axiom A flows, Comm. Math. Phys., 216 (2001), 277-312. doi: 10.1007/s002200000329. Google Scholar

[25]

Y. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples, Chaos, 7 (1997), 89-106. doi: 10.1063/1.166242. Google Scholar

[26]

Y. B. Pesin, Dimension Theory in Dynamical Systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997, Contemporary views and applications. doi: 10.7208/chicago/9780226662237.001.0001. Google Scholar

[27]

R. O. Ruggiero, Expansive dynamics and hyperbolic geometry, Bol. Soc. Brasil. Mat. (N.S.), 25 (1994), 139-172. doi: 10.1007/BF01321305. Google Scholar

[28]

R. O. Ruggiero, Expansive geodesic flows in manifolds with no conjugate points, Ergodic Theory Dynam. Systems, 17 (1997), 211-225. doi: 10.1017/S0143385797060963. Google Scholar

[29]

P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982. Google Scholar

[30]

L. S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynamical Systems, 2 (1982), 109-124. doi: 10.1017/S0143385700009615. Google Scholar

show all references

References:
[1]

L. M. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR, 128 (1959), 873-875. Google Scholar

[2]

W. Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann., 259 (1982), 131-144. doi: 10.1007/BF01456836. Google Scholar

[3]

W. Ballmann, Lectures on Spaces of Nonpositive Curvature, vol. 25 of DMV Seminar, Birkhäuser Verlag, Basel, 1995, With an appendix by Misha Brin. doi: 10.1007/978-3-0348-9240-7. Google Scholar

[4]

R. Bowen, One-dimensional hyperbolic sets for flows, J. Differential Equations, 12 (1972), 173-179. doi: 10.1016/0022-0396(72)90012-5. Google Scholar

[5]

R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460. doi: 10.2307/2373793. Google Scholar

[6]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. Google Scholar

[7]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202. doi: 10.1007/BF01389848. Google Scholar

[8]

R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193. doi: 10.1016/0022-0396(72)90013-7. Google Scholar

[9]

K. Burns and K. Gelfert, Lyapunov spectrum for geodesic flows of rank 1 surfaces, Discrete Contin. Dyn. Syst., 34 (2014), 1841-1872. doi: 10.3934/dcds.2014.34.1841. Google Scholar

[10]

Y. Coudène and B. Schapira, Generic measures for geodesic flows on nonpositively curved manifolds, J. Éc. polytech. Math., 1 (2014), 387-408. doi: 10.5802/jep.14. Google Scholar

[11]

P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math., 46 (1973), 45–109, URL http://projecteuclid.org/euclid.pjm/1102946601. doi: 10.2140/pjm.1973.46.45. Google Scholar

[12]

P. Eberlein, When is a geodesic flow of Anosov type? Ⅰ, Ⅱ, J. Differential Geometry, 8 (1973), 437–463; ibid. 8 (1973), 565–577. doi: 10.4310/jdg/1214431801. Google Scholar

[13]

P. Eberlein, Geodesic flows in manifolds of nonpositive curvature, in Smooth Ergodic Theory and Its Applications (Seattle, WA, 1999), vol. 69 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 2001,525–571. doi: 10.1090/pspum/069/1858545. Google Scholar

[14]

D.-J. Feng and P. Shmerkin, Non-conformal repellers and the continuity of pressure for matrix cocycles, Geom. Funct. Anal., 24 (2014), 1101-1128. doi: 10.1007/s00039-014-0274-7. Google Scholar

[15]

K. GelfertF. Przytycki and M. Rams, On the Lyapunov spectrum for rational maps, Math. Ann., 348 (2010), 965-1004. doi: 10.1007/s00208-010-0508-4. Google Scholar

[16]

K. Gelfert and M. Rams, The Lyapunov spectrum of some parabolic systems, Ergodic Theory Dynam. Systems, 29 (2009), 919-940. doi: 10.1017/S0143385708080462. Google Scholar

[17]

K. Gelfert and R. O. Ruggiero, Geodesic flows modeled by expansive flows, To appear in: Proceedings of Edinburgh Mathematical Society.Google Scholar

[18]

M. Gerber and A. Wilkinson, Hölder regularity of horocycle foliations, J. Differential Geom., 52 (1999), 41-72. doi: 10.4310/jdg/1214425216. Google Scholar

[19]

E. Ghys, Flots d'Anosov sur les 3-variétés fibrées en cercles, Ergodic Theory Dynam. Systems, 4 (1984), 67-80. doi: 10.1017/S0143385700002273. Google Scholar

[20]

W. Hurewicz, Sur la dimension des produits cartesiens, Ann. of Math. (2), 36 (1935), 194-197. doi: 10.2307/1968674. Google Scholar

[21]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, vol. 54 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511809187. Google Scholar

[22]

A. O. LopesV. A. Rosas and R. O. Ruggiero, Cohomology and subcohomology problems for expansive, non Anosov geodesic flows, Discrete Contin. Dyn. Syst., 17 (2007), 403-422. doi: 10.3934/dcds.2007.17.403. Google Scholar

[23]

M. Paternain, Expansive geodesic flows on surfaces, Ergodic Theory Dynam. Systems, 13 (1993), 153-165. doi: 10.1017/S0143385700007264. Google Scholar

[24]

Y. B. Pesin and V. Sadovskaya, Multifractal analysis of conformal Axiom A flows, Comm. Math. Phys., 216 (2001), 277-312. doi: 10.1007/s002200000329. Google Scholar

[25]

Y. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples, Chaos, 7 (1997), 89-106. doi: 10.1063/1.166242. Google Scholar

[26]

Y. B. Pesin, Dimension Theory in Dynamical Systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997, Contemporary views and applications. doi: 10.7208/chicago/9780226662237.001.0001. Google Scholar

[27]

R. O. Ruggiero, Expansive dynamics and hyperbolic geometry, Bol. Soc. Brasil. Mat. (N.S.), 25 (1994), 139-172. doi: 10.1007/BF01321305. Google Scholar

[28]

R. O. Ruggiero, Expansive geodesic flows in manifolds with no conjugate points, Ergodic Theory Dynam. Systems, 17 (1997), 211-225. doi: 10.1017/S0143385797060963. Google Scholar

[29]

P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982. Google Scholar

[30]

L. S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynamical Systems, 2 (1982), 109-124. doi: 10.1017/S0143385700009615. Google Scholar

Figure 1.  local product structure
Figure 2.  Parametrization $R = R_v$ of the local cross section in a neighborhood of a vector $v$. Here $\pi$ denotes the projection of the centre stable leaf onto the cross section given by the local product structure.
Figure 3.  Schematic construction of $\nu$: $m_\ell$-cylinders which intersect $\Sigma^\ell$ (bold), cylinders on which $\nu$ is distributed (bold blue), $\ell = 1,2,3$
[1]

Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841

[2]

P. Kaplický, Dalibor Pražák. Lyapunov exponents and the dimension of the attractor for 2d shear-thinning incompressible flow. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 961-974. doi: 10.3934/dcds.2008.20.961

[3]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[4]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[5]

Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129

[6]

Vaughn Climenhaga. Multifractal formalism derived from thermodynamics for general dynamical systems. Electronic Research Announcements, 2010, 17: 1-11. doi: 10.3934/era.2010.17.1

[7]

Sabyasachi Mukherjee. Parabolic arcs of the multicorns: Real-analyticity of Hausdorff dimension, and singularities of $\mathrm{Per}_n(1)$ curves. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2565-2588. doi: 10.3934/dcds.2017110

[8]

Artur Avila. Density of positive Lyapunov exponents for quasiperiodic SL(2, R)-cocycles in arbitrary dimension. Journal of Modern Dynamics, 2009, 3 (4) : 631-636. doi: 10.3934/jmd.2009.3.631

[9]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[10]

Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957

[11]

Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107

[12]

Sebastian J. Schreiber. Expansion rates and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 433-438. doi: 10.3934/dcds.1997.3.433

[13]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[14]

Sergey Zelik. On the Lyapunov dimension of cascade systems. Communications on Pure & Applied Analysis, 2008, 7 (4) : 971-985. doi: 10.3934/cpaa.2008.7.971

[15]

Chao Liang, Wenxiang Sun, Jiagang Yang. Some results on perturbations of Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4287-4305. doi: 10.3934/dcds.2012.32.4287

[16]

Shrihari Sridharan, Atma Ram Tiwari. The dependence of Lyapunov exponents of polynomials on their coefficients. Journal of Computational Dynamics, 2019, 6 (1) : 95-109. doi: 10.3934/jcd.2019004

[17]

Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591

[18]

Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405

[19]

Sara Munday. On Hausdorff dimension and cusp excursions for Fuchsian groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2503-2520. doi: 10.3934/dcds.2012.32.2503

[20]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (46)
  • HTML views (80)
  • Cited by (0)

Other articles
by authors

[Back to Top]