January  2019, 39(1): 639-666. doi: 10.3934/dcds.2019026

Fundamental solutions and decay of fully non-local problems

1. 

Departamento de Matemáticas y Estadísticas, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile

2. 

Departamento de Matemáticas, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile

Corresponding author: Juan C. Pozo

*The first author is partially supported by Fondecyt grant 11160295.
The second author is partially supported by Fondecyt grant 1150230.

Received  June 2018 Revised  July 2018 Published  October 2018

In this paper, we study a fully non-local reaction-diffusion equation which is non-local both in time and space. We apply subordination principles to construct the fundamental solutions of this problem, which we use to find a representation of the mild solutions. Moreover, using techniques of Harmonic Analysis and Fourier Multipliers, we obtain the temporal decay rates for the mild solutions.

Citation: Juan C. Pozo, Vicente Vergara. Fundamental solutions and decay of fully non-local problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 639-666. doi: 10.3934/dcds.2019026
References:
[1]

B. n. BarriosI. PeralF. Soria and E. Valdinoci, A Widder's type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal., 213 (2014), 629-650.  doi: 10.1007/s00205-014-0733-1.  Google Scholar

[2]

S. Bochner, Diffusion equation and stochastic processes, Proc. Nat. Acad. Sci. U. S. A., 35 (1949), 368-370.  doi: 10.1073/pnas.35.7.368.  Google Scholar

[3]

S. Bochner, Harmonic Analysis and the Theory of Probability, University of California Press, Berkeley and Los Angeles, 1955.  Google Scholar

[4]

K. Bogdan and T. Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Comm. Math. Phys., 271 (2007), 179-198.  doi: 10.1007/s00220-006-0178-y.  Google Scholar

[5]

L. A. CaffarelliJ.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc. (JEMS), 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.  Google Scholar

[6]

R. CarloneA. Fiorenza and L. Tentarelli, The action of Volterra integral operators with highly singular kernels on Hölder continuous, Lebesgue and Sobolev functions, J. Funct. Anal., 273 (2017), 1258-1294.  doi: 10.1016/j.jfa.2017.04.013.  Google Scholar

[7]

P. Clément and J. A. Nohel, Abstract linear and nonlinear Volterra equations preserving positivity, SIAM J. Math. Anal., 10 (1979), 365-388.  doi: 10.1137/0510035.  Google Scholar

[8]

P. Clément and J. A. Nohel, Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels, SIAM J. Math. Anal., 12 (1981), 514-535.  doi: 10.1137/0512045.  Google Scholar

[9]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[10]

W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971.  Google Scholar

[11]

G. B. Folland, Real Analysis, 2nd edition, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999, Modern techniques and their applications, A Wiley-Interscience Publication.  Google Scholar

[12]

L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, NJ, 2004.  Google Scholar

[13]

G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations, vol. 34 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1990. doi: 10.1017/CBO9780511662805.  Google Scholar

[14]

L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, J. Math. Pures Appl. (9), 92 (2009), 163-187.  doi: 10.1016/j.matpur.2009.04.009.  Google Scholar

[15]

C. Imbert and R. Monneau, Homogenization of first-order equations with $(u/ε)$-periodic Hamiltonians. I. Local equations, Arch. Ration. Mech. Anal., 187 (2008), 49-89.  doi: 10.1007/s00205-007-0074-4.  Google Scholar

[16]

C. ImbertR. Monneau and E. Rouy, Homogenization of first order equations with $(u/ε)$-periodic Hamiltonians. II. Application to dislocations dynamics, Comm. Partial Differential Equations, 33 (2008), 479-516.  doi: 10.1080/03605300701318922.  Google Scholar

[17]

N. Jacob, Pseudo-differential Operators and Markov Processes, vol. 94 of Mathematical Research, Akademie Verlag, Berlin, 1996.  Google Scholar

[18]

J. KemppainenJ. SiljanderV. Vergara and R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in $\Bbb{R}^d$, Math. Ann., 366 (2016), 941-979.  doi: 10.1007/s00208-015-1356-z.  Google Scholar

[19]

J. KemppainenJ. Siljander and R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differential Equations, 263 (2017), 149-201.  doi: 10.1016/j.jde.2017.02.030.  Google Scholar

[20]

K.-H. Kim and S. Lim, Asymptotic behaviors of fundamental solution and its derivatives to fractional diffusion-wave equations, J. Korean Math. Soc., 53 (2016), 929-967.  doi: 10.4134/JKMS.j150343.  Google Scholar

[21]

A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340 (2008), 252-281.  doi: 10.1016/j.jmaa.2007.08.024.  Google Scholar

[22]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010, An introduction to mathematical models. doi: 10.1142/9781848163300.  Google Scholar

[23]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 77pp. doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[24]

J. Prüss, Evolutionary Integral Equations and Applications, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1993, [2012] reprint of the 1993 edition. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[25]

K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, vol. 68 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1999, Translated from the 1990 Japanese original, Revised by the author.  Google Scholar

[26]

R. L. Schilling, R. Song and Z. Vondraček, Bernstein Functions, vol. 37 of De Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 2010, Theory and applications.  Google Scholar

[27]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edition, Johann Ambrosius Barth, Heidelberg, 1995.  Google Scholar

[28]

J. L. Vázquez, Asymptotic behaviour for the fractional heat equation in the Euclidean space, Complex Var. Elliptic Equ., 63 (2018), 1216-1231.  doi: 10.1080/17476933.2017.1393807.  Google Scholar

[29]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.  Google Scholar

[30]

R. Zacher, Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79-103.  doi: 10.1007/s00028-004-0161-z.  Google Scholar

[31]

R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149.  doi: 10.1016/j.jmaa.2008.06.054.  Google Scholar

show all references

References:
[1]

B. n. BarriosI. PeralF. Soria and E. Valdinoci, A Widder's type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal., 213 (2014), 629-650.  doi: 10.1007/s00205-014-0733-1.  Google Scholar

[2]

S. Bochner, Diffusion equation and stochastic processes, Proc. Nat. Acad. Sci. U. S. A., 35 (1949), 368-370.  doi: 10.1073/pnas.35.7.368.  Google Scholar

[3]

S. Bochner, Harmonic Analysis and the Theory of Probability, University of California Press, Berkeley and Los Angeles, 1955.  Google Scholar

[4]

K. Bogdan and T. Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Comm. Math. Phys., 271 (2007), 179-198.  doi: 10.1007/s00220-006-0178-y.  Google Scholar

[5]

L. A. CaffarelliJ.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc. (JEMS), 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.  Google Scholar

[6]

R. CarloneA. Fiorenza and L. Tentarelli, The action of Volterra integral operators with highly singular kernels on Hölder continuous, Lebesgue and Sobolev functions, J. Funct. Anal., 273 (2017), 1258-1294.  doi: 10.1016/j.jfa.2017.04.013.  Google Scholar

[7]

P. Clément and J. A. Nohel, Abstract linear and nonlinear Volterra equations preserving positivity, SIAM J. Math. Anal., 10 (1979), 365-388.  doi: 10.1137/0510035.  Google Scholar

[8]

P. Clément and J. A. Nohel, Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels, SIAM J. Math. Anal., 12 (1981), 514-535.  doi: 10.1137/0512045.  Google Scholar

[9]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[10]

W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971.  Google Scholar

[11]

G. B. Folland, Real Analysis, 2nd edition, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999, Modern techniques and their applications, A Wiley-Interscience Publication.  Google Scholar

[12]

L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, NJ, 2004.  Google Scholar

[13]

G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations, vol. 34 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1990. doi: 10.1017/CBO9780511662805.  Google Scholar

[14]

L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, J. Math. Pures Appl. (9), 92 (2009), 163-187.  doi: 10.1016/j.matpur.2009.04.009.  Google Scholar

[15]

C. Imbert and R. Monneau, Homogenization of first-order equations with $(u/ε)$-periodic Hamiltonians. I. Local equations, Arch. Ration. Mech. Anal., 187 (2008), 49-89.  doi: 10.1007/s00205-007-0074-4.  Google Scholar

[16]

C. ImbertR. Monneau and E. Rouy, Homogenization of first order equations with $(u/ε)$-periodic Hamiltonians. II. Application to dislocations dynamics, Comm. Partial Differential Equations, 33 (2008), 479-516.  doi: 10.1080/03605300701318922.  Google Scholar

[17]

N. Jacob, Pseudo-differential Operators and Markov Processes, vol. 94 of Mathematical Research, Akademie Verlag, Berlin, 1996.  Google Scholar

[18]

J. KemppainenJ. SiljanderV. Vergara and R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in $\Bbb{R}^d$, Math. Ann., 366 (2016), 941-979.  doi: 10.1007/s00208-015-1356-z.  Google Scholar

[19]

J. KemppainenJ. Siljander and R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differential Equations, 263 (2017), 149-201.  doi: 10.1016/j.jde.2017.02.030.  Google Scholar

[20]

K.-H. Kim and S. Lim, Asymptotic behaviors of fundamental solution and its derivatives to fractional diffusion-wave equations, J. Korean Math. Soc., 53 (2016), 929-967.  doi: 10.4134/JKMS.j150343.  Google Scholar

[21]

A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340 (2008), 252-281.  doi: 10.1016/j.jmaa.2007.08.024.  Google Scholar

[22]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010, An introduction to mathematical models. doi: 10.1142/9781848163300.  Google Scholar

[23]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 77pp. doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[24]

J. Prüss, Evolutionary Integral Equations and Applications, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1993, [2012] reprint of the 1993 edition. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[25]

K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, vol. 68 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1999, Translated from the 1990 Japanese original, Revised by the author.  Google Scholar

[26]

R. L. Schilling, R. Song and Z. Vondraček, Bernstein Functions, vol. 37 of De Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 2010, Theory and applications.  Google Scholar

[27]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edition, Johann Ambrosius Barth, Heidelberg, 1995.  Google Scholar

[28]

J. L. Vázquez, Asymptotic behaviour for the fractional heat equation in the Euclidean space, Complex Var. Elliptic Equ., 63 (2018), 1216-1231.  doi: 10.1080/17476933.2017.1393807.  Google Scholar

[29]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.  Google Scholar

[30]

R. Zacher, Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79-103.  doi: 10.1007/s00028-004-0161-z.  Google Scholar

[31]

R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149.  doi: 10.1016/j.jmaa.2008.06.054.  Google Scholar

[1]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[2]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[3]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[4]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[5]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[6]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[7]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[8]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[9]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[12]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[13]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[16]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[17]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[19]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[20]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (171)
  • HTML views (139)
  • Cited by (4)

Other articles
by authors

[Back to Top]