We study the asymptotic behavior of a class of non-autonomous non-local fractional stochastic parabolic equation driven by multiplicative white noise on the entire space $\mathbb{R}^n$. We first prove the pathwise well-posedness of the equation and define a continuous non-autonomous cocycle in $L^2({\mathbb{R}} ^n)$. We then prove the existence and uniqueness of tempered pullback attractors for the cocycle under certain dissipative conditions. The periodicity of the tempered attractors is also proved when the deterministic non-autonomous external terms are periodic in time. The pullback asymptotic compactness of the cocycle in $L^2({\mathbb{R}} ^n)$ is established by the uniform estimates on the tails of solutions for sufficiently large space and time variables.
Citation: |
S. Abe
and S. Thurner
, Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion, Physica A, 356 (2005)
, 403-407.
![]() |
|
A. Adili
and B. Wang
, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013)
, 643-666.
doi: 10.3934/dcdsb.2013.18.643.![]() ![]() ![]() |
|
L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
|
P. W. Bates
, H. Lisei
and K. Lu
, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006)
, 1-21.
doi: 10.1142/S0219493706001621.![]() ![]() ![]() |
|
P. W. Bates
, K. Lu
and B. Wang
, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009)
, 845-869.
doi: 10.1016/j.jde.2008.05.017.![]() ![]() ![]() |
|
W. J. Beyn
, B. Gess
, P. Lescot
and M. R$\ddot o$ckner
, The global random attractor for a class of stochastic porous media equations, Comm. Partial Differential Equations, 36 (2011)
, 446-469.
doi: 10.1080/03605302.2010.523919.![]() ![]() ![]() |
|
L. Caffarelli
, J. Roquejoffre
and Y. Sire
, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010)
, 1151-1179.
doi: 10.4171/JEMS/226.![]() ![]() ![]() |
|
T. Caraballo
, M. J. Garrido-Atienza
, B. Schmalfuss
and J. Valero
, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008)
, 415-443.
doi: 10.3934/dcds.2008.21.415.![]() ![]() ![]() |
|
T. Caraballo
, J. Real
and I. D. Chueshov
, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008)
, 525-539.
doi: 10.3934/dcdsb.2008.9.525.![]() ![]() ![]() |
|
T. Caraballo
and J. A. Langa
, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems Ser. A: Mathematical Analysis, 10 (2003)
, 491-513.
![]() ![]() |
|
T. Caraballo
, M. J. Garrido-Atienza
, B. Schmalfuss
and J. Valero
, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010)
, 439-455.
doi: 10.3934/dcdsb.2010.14.439.![]() ![]() ![]() |
|
T. Caraballo
, M. J. Garrido-Atienza
and T. Taniguchi
, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011)
, 3671-3684.
doi: 10.1016/j.na.2011.02.047.![]() ![]() ![]() |
|
T. Caraballo
, J. A. Langa
, V. S. Melnik
and J. Valero
, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003)
, 153-201.
doi: 10.1023/A:1022902802385.![]() ![]() ![]() |
|
I. Chueshov
and M. Scheutzow
, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004)
, 127-144.
doi: 10.1080/1468936042000207792.![]() ![]() ![]() |
|
I. Chueshow, Monotone Random Systems - Theory and Applications, Lecture Notes in Mathematics, 1779, Springer, Berlin, 2002.
doi: 10.1007/b83277.![]() ![]() ![]() |
|
H. Crauel
, A. Debussche
and F. Flandoli
, Random attractors, J. Dynam. Differential Equations, 9 (1997)
, 307-341.
doi: 10.1007/BF02219225.![]() ![]() ![]() |
|
H. Crauel
and F. Flandoli
, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994)
, 365-393.
doi: 10.1007/BF01193705.![]() ![]() ![]() |
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
J. Duan
and B. Schmalfuss
, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Comm. Math. Sci., 1 (2003)
, 133-151.
![]() ![]() |
|
F. Flandoli
and B. Schmalfuss
, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996)
, 21-45.
doi: 10.1080/17442509608834083.![]() ![]() ![]() |
|
C. Gal
and M. Warma
, Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016)
, 1279-1319.
doi: 10.3934/dcds.2016.36.1279.![]() ![]() ![]() |
|
M. J. Garrido-Atienza
and B. Schmalfuss
, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dynam. Differential Equations, 23 (2011)
, 671-681.
doi: 10.1007/s10884-011-9222-5.![]() ![]() ![]() |
|
M. J. Garrido-Atienza
, A. Ogrowsky
and B. Schmalfuss
, Random differential equations with random delays, Stoch. Dyn., 11 (2011)
, 369-388.
doi: 10.1142/S0219493711003358.![]() ![]() ![]() |
|
M. J. Garrido-Atienza
, B. Maslowski
and B. Schmalfuss
, Random attractors for stochastic equations driven by a fractional Brownian motion, Int. J. Bifur. Chaos, 20 (2010)
, 2761-2782.
doi: 10.1142/S0218127410027349.![]() ![]() ![]() |
|
A. Garroni
and S. Muller
, A variational model for dislocations in the line tension limit, Arch. Ration. Mech. Anal., 181 (2006)
, 535-578.
doi: 10.1007/s00205-006-0432-7.![]() ![]() ![]() |
|
B. Gess
, W. Liu
and M. Rockner
, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251 (2011)
, 1225-1253.
doi: 10.1016/j.jde.2011.02.013.![]() ![]() ![]() |
|
B. Gess
, Random attractors for degenerate stochastic partial differential equations, J. Dynam. Differential Equations, 25 (2013)
, 121-157.
doi: 10.1007/s10884-013-9294-5.![]() ![]() ![]() |
|
B. Gess
, Random attractors for singular stochastic evolution equations, J. Differential Equations, 255 (2013)
, 524-559.
doi: 10.1016/j.jde.2013.04.023.![]() ![]() ![]() |
|
Q. Guan
, Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006)
, 289-329.
doi: 10.1007/s00220-006-0054-9.![]() ![]() ![]() |
|
Q. Guan
and Z. Ma
, Reflected symmetric $α$-stable processes and regional fractional Laplacian, Probab. Theory Related Fields, 134 (2006)
, 649-694.
doi: 10.1007/s00440-005-0438-3.![]() ![]() ![]() |
|
Q. Guan
and Z. Ma
, Boundary problems for fractional Laplacians, Stoch. Dyn., 5 (2005)
, 385-424.
doi: 10.1142/S021949370500150X.![]() ![]() ![]() |
|
J. Huang
and W. Shen
, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains, Discrete Contin. Dyn. Syst. Ser. A, 24 (2009)
, 855-882.
doi: 10.3934/dcds.2009.24.855.![]() ![]() ![]() |
|
M. Jara
, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009)
, 198-214.
doi: 10.1002/cpa.20253.![]() ![]() ![]() |
|
P. E. Kloeden
and J. A. Langa
, Flattening, squeezing and the existence of random attractors, Proc. Royal Soc. London Ser. A., 463 (2007)
, 163-181.
doi: 10.1098/rspa.2006.1753.![]() ![]() ![]() |
|
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, Vol. 176, Amer. Math. Soc., Providence, 2011.
doi: 10.1090/surv/176.![]() ![]() ![]() |
|
M. Koslowski
, A. Cuitino
and M. Ortiz
, A phasefield theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystal, J. Mech. Phys. Solids, 50 (2002)
, 2597-2635.
doi: 10.1016/S0022-5096(02)00037-6.![]() ![]() ![]() |
|
J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Paris, 1969.
![]() ![]() |
|
H. Lu
, P. W. Bates
, S. Lu
and M. Zhang
, Dynamics of 3D fractional complex Ginzburg-Landau equation, J. Differential Equations, 259 (2015)
, 5276-5301.
![]() |
|
H. Lu
, P. W. Bates
, J. Xin
and M. Zhang
, Asymptotic behavior of stochastic fractional power dissipative equations on ${\mathbb{R}} ^n$, Nonlinear Anal., 128 (2015)
, 176-198.
doi: 10.1016/j.na.2015.06.033.![]() ![]() ![]() |
|
H. Lu
, P. W. Bates
, S. Lu
and M. Zhang
, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Comm. Math. Sci., 14 (2016)
, 273-295.
doi: 10.4310/CMS.2016.v14.n1.a11.![]() ![]() ![]() |
|
H. Lu
, S. Lv
and M. Zhang
, Fourier spectral approximation to the dynamical behavior of 3D fractional Ginzburg-Landau equation, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017)
, 2539-2564.
doi: 10.3934/dcds.2017109.![]() ![]() ![]() |
|
H. Lu
and M. Zhang
, The spectral method for long-time behavior of a fractional power dissipative system, Taiwanese J. Math., 22 (2018)
, 453-483.
doi: 10.11650/tjm/170902.![]() ![]() ![]() |
|
Y. Lv
and W. Wang
, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008)
, 1-23.
doi: 10.1016/j.jde.2007.10.009.![]() ![]() ![]() |
|
X. Ros-Oton
and J. Serra
, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, Journal de Mathematiques Pures et Appliquees, 101 (2014)
, 275-302.
doi: 10.1016/j.matpur.2013.06.003.![]() ![]() ![]() |
|
B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, 185–192, Dresden, 1992.
![]() |
|
R. Servadei
and E. Valdinoci
, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014)
, 831-855.
doi: 10.1017/S0308210512001783.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013)
, 2105-2137.
doi: 10.3934/dcds.2013.33.2105.![]() ![]() ![]() |
|
Z. Shen
, S. Zhou
and W. Shen
, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010)
, 1432-1457.
doi: 10.1016/j.jde.2009.10.007.![]() ![]() ![]() |
|
B. Wang
, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999)
, 41-52.
doi: 10.1016/S0167-2789(98)00304-2.![]() ![]() ![]() |
|
B. Wang
, Random Attractors for the Stochastic Benjamin-Bona-Mahony Equation on Unbounded Domains, J. Differential Equations, 246 (2009)
, 2506-2537.
doi: 10.1016/j.jde.2008.10.012.![]() ![]() ![]() |
|
B. Wang
, Asymptotic behavior of stochastic wave equations with critical exponents on ${\mathbb{R}} ^3$, Trans. Amer. Math. Soc., 363 (2011)
, 3639-3663.
doi: 10.1090/S0002-9947-2011-05247-5.![]() ![]() ![]() |
|
B. Wang
, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012)
, 1544-1583.
doi: 10.1016/j.jde.2012.05.015.![]() ![]() ![]() |
|
B. Wang
, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014)
, 269-300.
doi: 10.3934/dcds.2014.34.269.![]() ![]() ![]() |
|
B. Wang
, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 158 (2017)
, 60-82.
doi: 10.1016/j.na.2017.04.006.![]() ![]() ![]() |