We will give a new proof of a recent result of P. Daskalopoulos, G. Huisken and J.R. King ([
Citation: |
B. Allen, Non-compact Solutions to Inverse Mean Curvature Flow in Hyperbolic Space, Ph.D. thesis, University of Tennessee, Knoxville, USA, 2016.
![]() |
|
P. Daskalopoulos and G. Huisken, Inverse mean curvature flow of entire graphs, arXiv: 1709.06665v1
![]() |
|
C. Gerhardt
, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom., 32 (1990)
, 299-314.
![]() ![]() |
|
G. Huisken
and T. Ilmanen
, The Riemannian Penrose inequality, Internat. Math. Res. Notices, 20 (1997)
, 1045-1058.
doi: 10.1155/S1073792897000664.![]() ![]() ![]() |
|
G. Huisken
and T. Ilmanen
, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom., 59 (2001)
, 353-437.
![]() ![]() |
|
G. Huisken
and T. Ilmanen
, Higher regularity of the inverse mean curvature flow, J. Differential Geom., 80 (2008)
, 433-451.
![]() ![]() |
|
B. Lambert
and J. Scheuer
, The inverse mean curvature flow perpendicular to the sphere, Math. Ann., 364 (2016)
, 1069-1093.
doi: 10.1007/s00208-015-1248-2.![]() ![]() ![]() |
|
T. Marquardt
, Inverse mean curvature flow for star-shaped hypersurfaces evolving in a cone, J. Geom. Anal., 23 (2013)
, 1303-1313.
doi: 10.1007/s12220-011-9288-7.![]() ![]() ![]() |
|
T. Marquardt
, Weak solutions of the inverse mean curvature flow for hypersurfaces with boundary, J. Reine Angew. Math., 728 (2017)
, 237-261.
doi: 10.1515/crelle-2014-0116.![]() ![]() ![]() |
|
K. Smoczyk
, Remarks on the inverse mean curvature flow, Asian J. Math., 4 (2000)
, 331-335.
doi: 10.4310/AJM.2000.v4.n2.a3.![]() ![]() ![]() |
|
J. Urbas
, On the expansion of starshaped hypersurfaces by symmetric functions of their principle curvatures, Math. Z., 205 (1990)
, 355-372.
doi: 10.1007/BF02571249.![]() ![]() ![]() |