# American Institute of Mathematical Sciences

February  2019, 39(2): 863-880. doi: 10.3934/dcds.2019036

## Existence of self-similar solutions of the inverse mean curvature flow

 Institute of Mathematics, Academia Sinica, Taipei, Taiwan

* Corresponding author: Kin Ming Hui

Received  January 2018 Revised  August 2018 Published  November 2018

We will give a new proof of a recent result of P. Daskalopoulos, G. Huisken and J.R. King ([2] and reference [7] of [2]) on the existence of self-similar solution of the inverse mean curvature flow which is the graph of a radially symmetric solution in $\mathbb{R}^n$, $n≥ 2$, of the form $u(x,t) = e^{λ t}f(e^{-λ t} x)$ for any constants $λ>\frac{1}{n-1}$ and $μ < 0$ such that $f(0) = μ$. More precisely we will give a new proof of the existence of a unique radially symmetric solution $f$ of the equation $\text{div}\,\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^2}} \right) = \frac{1}{λ}·\frac{\sqrt{1+|\nabla f|^2}}{x·\nabla f-f}$ in $\mathbb{R}^n$, $f(0) = μ$, for any $λ>\frac{1}{n-1}$ and $μ < 0$, which satisfies $f_r(r)>0$, $f_{rr}(r)>0$ and $rf_r(r)>f(r)$ for all $r>0$. We will also prove that $\lim_{r\to∞}\frac{rf_r(r)}{f(r)} = \frac{λ (n-1)}{λ (n-1)-1}$.

Citation: Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036
##### References:
 [1] B. Allen, Non-compact Solutions to Inverse Mean Curvature Flow in Hyperbolic Space, Ph.D. thesis, University of Tennessee, Knoxville, USA, 2016. [2] P. Daskalopoulos and G. Huisken, Inverse mean curvature flow of entire graphs, arXiv: 1709.06665v1 [3] C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom., 32 (1990), 299-314. [4] G. Huisken and T. Ilmanen, The Riemannian Penrose inequality, Internat. Math. Res. Notices, 20 (1997), 1045-1058.  doi: 10.1155/S1073792897000664. [5] G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom., 59 (2001), 353-437. [6] G. Huisken and T. Ilmanen, Higher regularity of the inverse mean curvature flow, J. Differential Geom., 80 (2008), 433-451. [7] B. Lambert and J. Scheuer, The inverse mean curvature flow perpendicular to the sphere, Math. Ann., 364 (2016), 1069-1093.  doi: 10.1007/s00208-015-1248-2. [8] T. Marquardt, Inverse mean curvature flow for star-shaped hypersurfaces evolving in a cone, J. Geom. Anal., 23 (2013), 1303-1313.  doi: 10.1007/s12220-011-9288-7. [9] T. Marquardt, Weak solutions of the inverse mean curvature flow for hypersurfaces with boundary, J. Reine Angew. Math., 728 (2017), 237-261.  doi: 10.1515/crelle-2014-0116. [10] K. Smoczyk, Remarks on the inverse mean curvature flow, Asian J. Math., 4 (2000), 331-335.  doi: 10.4310/AJM.2000.v4.n2.a3. [11] J. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principle curvatures, Math. Z., 205 (1990), 355-372.  doi: 10.1007/BF02571249.

show all references

##### References:
 [1] B. Allen, Non-compact Solutions to Inverse Mean Curvature Flow in Hyperbolic Space, Ph.D. thesis, University of Tennessee, Knoxville, USA, 2016. [2] P. Daskalopoulos and G. Huisken, Inverse mean curvature flow of entire graphs, arXiv: 1709.06665v1 [3] C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom., 32 (1990), 299-314. [4] G. Huisken and T. Ilmanen, The Riemannian Penrose inequality, Internat. Math. Res. Notices, 20 (1997), 1045-1058.  doi: 10.1155/S1073792897000664. [5] G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom., 59 (2001), 353-437. [6] G. Huisken and T. Ilmanen, Higher regularity of the inverse mean curvature flow, J. Differential Geom., 80 (2008), 433-451. [7] B. Lambert and J. Scheuer, The inverse mean curvature flow perpendicular to the sphere, Math. Ann., 364 (2016), 1069-1093.  doi: 10.1007/s00208-015-1248-2. [8] T. Marquardt, Inverse mean curvature flow for star-shaped hypersurfaces evolving in a cone, J. Geom. Anal., 23 (2013), 1303-1313.  doi: 10.1007/s12220-011-9288-7. [9] T. Marquardt, Weak solutions of the inverse mean curvature flow for hypersurfaces with boundary, J. Reine Angew. Math., 728 (2017), 237-261.  doi: 10.1515/crelle-2014-0116. [10] K. Smoczyk, Remarks on the inverse mean curvature flow, Asian J. Math., 4 (2000), 331-335.  doi: 10.4310/AJM.2000.v4.n2.a3. [11] J. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principle curvatures, Math. Z., 205 (1990), 355-372.  doi: 10.1007/BF02571249.
 [1] Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313 [2] Keisuke Takasao. Existence of weak solution for mean curvature flow with transport term and forcing term. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2655-2677. doi: 10.3934/cpaa.2020116 [3] Daehwan Kim, Juncheol Pyo. Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5897-5919. doi: 10.3934/dcds.2018256 [4] Eva Stadler, Johannes Müller. Analyzing plasmid segregation: Existence and stability of the eigensolution in a non-compact case. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4127-4164. doi: 10.3934/dcdsb.2020091 [5] Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002 [6] Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801 [7] Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47 [8] Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159 [9] Sigurd Angenent. Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 1-8. doi: 10.3934/nhm.2013.8.1 [10] Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 [11] Kin Ming Hui, Jinwan Park. Asymptotic behaviour of singular solution of the fast diffusion equation in the punctured euclidean space. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5473-5508. doi: 10.3934/dcds.2021085 [12] Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure and Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549 [13] Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323 [14] Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198 [15] Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks and Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401 [16] D. G. Aronson. Self-similar focusing in porous media: An explicit calculation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1685-1691. doi: 10.3934/dcdsb.2012.17.1685 [17] G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131 [18] Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101 [19] Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857 [20] F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91

2020 Impact Factor: 1.392