We consider the following Liouville-type PDE, which is related to stationary solutions of the Keller-Segel's model for chemotaxis:
$\left\{ \begin{gathered} - \Delta u + \beta u = \rho \left( {\frac{{{e^u}}}{{\int_\Omega {{e^u}} }} - \frac{1}{{\left| \Omega \right|}}} \right)\;\;\;\;\;\;{\text{in}}\;\Omega \hfill \\ {\partial _\nu }u = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\text{on}}\;\partial \Omega \hfill \\ \end{gathered} \right.,$
where $\Omega \subset {\mathbb{R}^2}$ is a smooth bounded domain and $\beta, ρ$ are real parameters. We prove existence of solutions under some algebraic conditions involving $\beta, ρ$. In particular, if $\Omega$ is not simply connected, then we can find solution for a generic choice of the parameters. We use variational and Morse-theoretical methods.
Citation: |
O. Agudelo and A. Pistoia, Boundary concentration phenomena for the higher-dimensional Keller-Segel system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 132, 31pp. doi: 10.1007/s00526-016-1083-7. | |
M. Ahmedou, S. Kallel and C. B. Ndiaye, The resonant boundary Q-curvature problem and boundary weighted barycenters, preprint. | |
D. Bartolucci , F. De Marchis and A. Malchiodi , Supercritical conformal metrics on surfaces with conical singularities, Int. Math. Res. Not. IMRN, (2011) , 5625-5643. doi: 10.1093/imrn/rnq285. | |
L. Battaglia , Existence and multiplicity result for the singular {T}oda system, J. Math. Anal. Appl., 424 (2015) , 49-85. doi: 10.1016/j.jmaa.2014.10.081. | |
L. Battaglia, B2 and G2 Toda systems on compact surfaces: A variational approach, Journal of Mathematical Physics, 58 (2017), 011506 doi: 10.1063/1.4974774. | |
L. Battaglia , A. Jevnikar , A. Malchiodi and D. Ruiz , A general existence result for the Toda system on compact surfaces, Adv. Math., 285 (2015) , 937-979. doi: 10.1016/j.aim.2015.07.036. | |
L. Battaglia and A. Malchiodi , Existence and non-existence results for the SU(3) singular Toda system on compact surfaces, J. Funct. Anal., 270 (2016) , 3750-3807. doi: 10.1016/j.jfa.2015.12.011. | |
L. Battaglia and G. Mancini , A note on compactness properties of the singular Toda system, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015) , 299-307. doi: 10.4171/RLM/708. | |
D. Bonheure , J.-B. Casteras and B. Noris , Layered solutions with unbounded mass for the Keller-Segel equation, J. Fixed Point Theory Appl., 19 (2017) , 529-558. doi: 10.1007/s11784-016-0364-2. | |
D. Bonheure, J.-B. Casteras and B. Noris, Multiple positive solutions of the stationary Keller-Segel system, Calc. Var. Partial Differential Equations, 56 (2017), Art. 74, 35pp. doi: 10.1007/s00526-017-1163-3. | |
H. Brezis and F. Merle , Uniform estimates and blow-up behavior for solutions of -Δu = V(x)eu in two dimensions, Comm. Partial Differential Equations, 16 (1991) , 1223-1253. doi: 10.1080/03605309108820797. | |
A. Carlotto and A. Malchiodi , Weighted barycentric sets and singular Liouville equations on compact surfaces, J. Funct. Anal., 262 (2012) , 409-450. doi: 10.1016/j.jfa.2011.09.012. | |
S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on S2, J. Differential Geom., 27 (1988), 259-296, URL http://projecteuclid.org/euclid.jdg/1214441783. | |
F. De Marchis , Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010) , 2165-2192. doi: 10.1016/j.jfa.2010.07.003. | |
F. De Marchis , R. López-Soriano and D. Ruiz , Compactness, existence and multiplicity for the singular mean field problem with sign-changing potentials, J. Math. Pures Appl. (9), 115 (2018) , 237-267. doi: 10.1016/j.matpur.2017.11.007. | |
M. del Pino , A. Pistoia and G. Vaira , Large mass boundary condensation patterns in the stationary Keller-Segel system, J. Differential Equations, 261 (2016) , 3414-3462. doi: 10.1016/j.jde.2016.05.032. | |
Z. Djadli and A. Malchiodi , Existence of conformal metrics with constant Q-curvature, Ann. of Math. (2), 168 (2008) , 813-858. doi: 10.4007/annals.2008.168.813. | |
A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. | |
A. Jevnikar , A note on a multiplicity result for the mean field equation on compact surfaces, Adv. Nonlinear Stud., 16 (2016) , 221-229. doi: 10.1515/ans-2015-5009. | |
A. Jevnikar , S. Kallel and A. Malchiodi , A topological join construction and the Toda system on compact surfaces of arbitrary genus, Anal. PDE, 8 (2015) , 1963-2027. doi: 10.2140/apde.2015.8.1963. | |
S. Kallel and R. Karoui , Symmetric joins and weighted barycenters, Adv. Nonlinear Stud., 11 (2011) , 117-143. doi: 10.1515/ans-2011-0106. | |
E. F. Keller and L. A. Segel , Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970) , 399-415. doi: 10.1016/0022-5193(70)90092-5. | |
M. Lucia , A deformation lemma with an application to a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007) , 113-138. | |
A. Malchiodi , Topological methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst., 21 (2008) , 277-294. doi: 10.3934/dcds.2008.21.277. | |
A. Malchiodi , Variational analysis of Toda systems, Chin. Ann. Math. Ser. B, 38 (2017) , 539-562. doi: 10.1007/s11401-017-1082-9. | |
A. Malchiodi , A variational approach to Liouville equations, Boll. Unione Mat. Ital., 10 (2017) , 75-97. doi: 10.1007/s40574-016-0092-y. | |
J. Moser , A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71) , 1077-1092. doi: 10.1512/iumj.1971.20.20101. | |
C. B. Ndiaye , Conformal metrics with constant Q-curvature for manifolds with boundary, Comm. Anal. Geom., 16 (2008) , 1049-1124. doi: 10.4310/CAG.2008.v16.n5.a6. | |
A. Pistoia and G. Vaira , Steady states with unbounded mass of the Keller-Segel system, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015) , 203-222. doi: 10.1017/S0308210513000619. | |
G. Wang and J. Wei , Steady state solutions of a reaction-diffusion system modeling chemotaxis, Math. Nachr., 233/234 (2002) , 221-236. doi: 10.1002/1522-2616(200201)233:1<221::AID-MANA221>3.3.CO;2-D. |