We consider the following Liouville-type PDE, which is related to stationary solutions of the Keller-Segel's model for chemotaxis:
$\left\{ \begin{gathered} - \Delta u + \beta u = \rho \left( {\frac{{{e^u}}}{{\int_\Omega {{e^u}} }} - \frac{1}{{\left| \Omega \right|}}} \right)\;\;\;\;\;\;{\text{in}}\;\Omega \hfill \\ {\partial _\nu }u = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\text{on}}\;\partial \Omega \hfill \\ \end{gathered} \right.,$
where $\Omega \subset {\mathbb{R}^2}$ is a smooth bounded domain and $\beta, ρ$ are real parameters. We prove existence of solutions under some algebraic conditions involving $\beta, ρ$. In particular, if $\Omega$ is not simply connected, then we can find solution for a generic choice of the parameters. We use variational and Morse-theoretical methods.
Citation: |
O. Agudelo and A. Pistoia, Boundary concentration phenomena for the higher-dimensional Keller-Segel system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 132, 31pp.
doi: 10.1007/s00526-016-1083-7.![]() ![]() ![]() |
|
M. Ahmedou, S. Kallel and C. B. Ndiaye, The resonant boundary Q-curvature problem and boundary weighted barycenters, preprint.
![]() |
|
D. Bartolucci
, F. De Marchis
and A. Malchiodi
, Supercritical conformal metrics on surfaces with conical singularities, Int. Math. Res. Not. IMRN, (2011)
, 5625-5643.
doi: 10.1093/imrn/rnq285.![]() ![]() ![]() |
|
L. Battaglia
, Existence and multiplicity result for the singular {T}oda system, J. Math. Anal. Appl., 424 (2015)
, 49-85.
doi: 10.1016/j.jmaa.2014.10.081.![]() ![]() ![]() |
|
L. Battaglia,
B2 and G2 Toda systems on compact surfaces: A variational approach,
Journal of Mathematical Physics, 58 (2017), 011506
doi: 10.1063/1.4974774.![]() ![]() |
|
L. Battaglia
, A. Jevnikar
, A. Malchiodi
and D. Ruiz
, A general existence result for the Toda system on compact surfaces, Adv. Math., 285 (2015)
, 937-979.
doi: 10.1016/j.aim.2015.07.036.![]() ![]() ![]() |
|
L. Battaglia
and A. Malchiodi
, Existence and non-existence results for the SU(3) singular Toda system on compact surfaces, J. Funct. Anal., 270 (2016)
, 3750-3807.
doi: 10.1016/j.jfa.2015.12.011.![]() ![]() ![]() |
|
L. Battaglia
and G. Mancini
, A note on compactness properties of the singular Toda system, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015)
, 299-307.
doi: 10.4171/RLM/708.![]() ![]() ![]() |
|
D. Bonheure
, J.-B. Casteras
and B. Noris
, Layered solutions with unbounded mass for the Keller-Segel equation, J. Fixed Point Theory Appl., 19 (2017)
, 529-558.
doi: 10.1007/s11784-016-0364-2.![]() ![]() ![]() |
|
D. Bonheure, J.-B. Casteras and B. Noris, Multiple positive solutions of the stationary Keller-Segel system,
Calc. Var. Partial Differential Equations, 56 (2017), Art. 74, 35pp.
doi: 10.1007/s00526-017-1163-3.![]() ![]() ![]() |
|
H. Brezis
and F. Merle
, Uniform estimates and blow-up behavior for solutions of -Δu = V(x)eu in two dimensions, Comm. Partial Differential Equations, 16 (1991)
, 1223-1253.
doi: 10.1080/03605309108820797.![]() ![]() ![]() |
|
A. Carlotto
and A. Malchiodi
, Weighted barycentric sets and singular Liouville equations on compact surfaces, J. Funct. Anal., 262 (2012)
, 409-450.
doi: 10.1016/j.jfa.2011.09.012.![]() ![]() ![]() |
|
S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on S2, J. Differential Geom., 27 (1988), 259-296, URL http://projecteuclid.org/euclid.jdg/1214441783.
![]() |
|
F. De Marchis
, Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010)
, 2165-2192.
doi: 10.1016/j.jfa.2010.07.003.![]() ![]() ![]() |
|
F. De Marchis
, R. López-Soriano
and D. Ruiz
, Compactness, existence and multiplicity for the singular mean field problem with sign-changing potentials, J. Math. Pures Appl. (9), 115 (2018)
, 237-267.
doi: 10.1016/j.matpur.2017.11.007.![]() ![]() ![]() |
|
M. del Pino
, A. Pistoia
and G. Vaira
, Large mass boundary condensation patterns in the stationary Keller-Segel system, J. Differential Equations, 261 (2016)
, 3414-3462.
doi: 10.1016/j.jde.2016.05.032.![]() ![]() ![]() |
|
Z. Djadli
and A. Malchiodi
, Existence of conformal metrics with constant Q-curvature, Ann. of Math. (2), 168 (2008)
, 813-858.
doi: 10.4007/annals.2008.168.813.![]() ![]() ![]() |
|
A. Hatcher,
Algebraic Topology, Cambridge University Press, Cambridge, 2002.
![]() ![]() |
|
A. Jevnikar
, A note on a multiplicity result for the mean field equation on compact surfaces, Adv. Nonlinear Stud., 16 (2016)
, 221-229.
doi: 10.1515/ans-2015-5009.![]() ![]() ![]() |
|
A. Jevnikar
, S. Kallel
and A. Malchiodi
, A topological join construction and the Toda system on compact surfaces of arbitrary genus, Anal. PDE, 8 (2015)
, 1963-2027.
doi: 10.2140/apde.2015.8.1963.![]() ![]() ![]() |
|
S. Kallel
and R. Karoui
, Symmetric joins and weighted barycenters, Adv. Nonlinear Stud., 11 (2011)
, 117-143.
doi: 10.1515/ans-2011-0106.![]() ![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970)
, 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
|
M. Lucia
, A deformation lemma with an application to a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007)
, 113-138.
![]() ![]() |
|
A. Malchiodi
, Topological methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst., 21 (2008)
, 277-294.
doi: 10.3934/dcds.2008.21.277.![]() ![]() ![]() |
|
A. Malchiodi
, Variational analysis of Toda systems, Chin. Ann. Math. Ser. B, 38 (2017)
, 539-562.
doi: 10.1007/s11401-017-1082-9.![]() ![]() ![]() |
|
A. Malchiodi
, A variational approach to Liouville equations, Boll. Unione Mat. Ital., 10 (2017)
, 75-97.
doi: 10.1007/s40574-016-0092-y.![]() ![]() ![]() |
|
J. Moser
, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71)
, 1077-1092.
doi: 10.1512/iumj.1971.20.20101.![]() ![]() ![]() |
|
C. B. Ndiaye
, Conformal metrics with constant Q-curvature for manifolds with boundary, Comm. Anal. Geom., 16 (2008)
, 1049-1124.
doi: 10.4310/CAG.2008.v16.n5.a6.![]() ![]() ![]() |
|
A. Pistoia
and G. Vaira
, Steady states with unbounded mass of the Keller-Segel system, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015)
, 203-222.
doi: 10.1017/S0308210513000619.![]() ![]() ![]() |
|
G. Wang
and J. Wei
, Steady state solutions of a reaction-diffusion system modeling chemotaxis, Math. Nachr., 233/234 (2002)
, 221-236.
doi: 10.1002/1522-2616(200201)233:1<221::AID-MANA221>3.3.CO;2-D.![]() ![]() ![]() |