February  2019, 39(2): 905-926. doi: 10.3934/dcds.2019038

A general existence result for stationary solutions to the Keller-Segel system

Università degli Studi Roma Tre, Dipartimento di Matematica e Fisica, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy

Received  February 2018 Revised  August 2018 Published  November 2018

We consider the following Liouville-type PDE, which is related to stationary solutions of the Keller-Segel's model for chemotaxis:
$\left\{ \begin{gathered} - \Delta u + \beta u = \rho \left( {\frac{{{e^u}}}{{\int_\Omega {{e^u}} }} - \frac{1}{{\left| \Omega \right|}}} \right)\;\;\;\;\;\;{\text{in}}\;\Omega \hfill \\ {\partial _\nu }u = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\text{on}}\;\partial \Omega \hfill \\ \end{gathered} \right.,$
where $\Omega \subset {\mathbb{R}^2}$ is a smooth bounded domain and $\beta, ρ$ are real parameters. We prove existence of solutions under some algebraic conditions involving $\beta, ρ$. In particular, if $\Omega$ is not simply connected, then we can find solution for a generic choice of the parameters. We use variational and Morse-theoretical methods.
Citation: Luca Battaglia. A general existence result for stationary solutions to the Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 905-926. doi: 10.3934/dcds.2019038
References:
[1]

O. Agudelo and A. Pistoia, Boundary concentration phenomena for the higher-dimensional Keller-Segel system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 132, 31pp. doi: 10.1007/s00526-016-1083-7.  Google Scholar

[2]

M. Ahmedou, S. Kallel and C. B. Ndiaye, The resonant boundary Q-curvature problem and boundary weighted barycenters, preprint. Google Scholar

[3]

D. BartolucciF. De Marchis and A. Malchiodi, Supercritical conformal metrics on surfaces with conical singularities, Int. Math. Res. Not. IMRN, (2011), 5625-5643.  doi: 10.1093/imrn/rnq285.  Google Scholar

[4]

L. Battaglia, Existence and multiplicity result for the singular {T}oda system, J. Math. Anal. Appl., 424 (2015), 49-85.  doi: 10.1016/j.jmaa.2014.10.081.  Google Scholar

[5]

L. Battaglia, B2 and G2 Toda systems on compact surfaces: A variational approach, Journal of Mathematical Physics, 58 (2017), 011506 doi: 10.1063/1.4974774.  Google Scholar

[6]

L. BattagliaA. JevnikarA. Malchiodi and D. Ruiz, A general existence result for the Toda system on compact surfaces, Adv. Math., 285 (2015), 937-979.  doi: 10.1016/j.aim.2015.07.036.  Google Scholar

[7]

L. Battaglia and A. Malchiodi, Existence and non-existence results for the SU(3) singular Toda system on compact surfaces, J. Funct. Anal., 270 (2016), 3750-3807.  doi: 10.1016/j.jfa.2015.12.011.  Google Scholar

[8]

L. Battaglia and G. Mancini, A note on compactness properties of the singular Toda system, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015), 299-307.  doi: 10.4171/RLM/708.  Google Scholar

[9]

D. BonheureJ.-B. Casteras and B. Noris, Layered solutions with unbounded mass for the Keller-Segel equation, J. Fixed Point Theory Appl., 19 (2017), 529-558.  doi: 10.1007/s11784-016-0364-2.  Google Scholar

[10]

D. Bonheure, J.-B. Casteras and B. Noris, Multiple positive solutions of the stationary Keller-Segel system, Calc. Var. Partial Differential Equations, 56 (2017), Art. 74, 35pp. doi: 10.1007/s00526-017-1163-3.  Google Scholar

[11]

H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of -Δu = V(x)eu in two dimensions, Comm. Partial Differential Equations, 16 (1991), 1223-1253.  doi: 10.1080/03605309108820797.  Google Scholar

[12]

A. Carlotto and A. Malchiodi, Weighted barycentric sets and singular Liouville equations on compact surfaces, J. Funct. Anal., 262 (2012), 409-450.  doi: 10.1016/j.jfa.2011.09.012.  Google Scholar

[13]

S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on S2, J. Differential Geom., 27 (1988), 259-296, URL http://projecteuclid.org/euclid.jdg/1214441783. Google Scholar

[14]

F. De Marchis, Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192.  doi: 10.1016/j.jfa.2010.07.003.  Google Scholar

[15]

F. De MarchisR. López-Soriano and D. Ruiz, Compactness, existence and multiplicity for the singular mean field problem with sign-changing potentials, J. Math. Pures Appl. (9), 115 (2018), 237-267.  doi: 10.1016/j.matpur.2017.11.007.  Google Scholar

[16]

M. del PinoA. Pistoia and G. Vaira, Large mass boundary condensation patterns in the stationary Keller-Segel system, J. Differential Equations, 261 (2016), 3414-3462.  doi: 10.1016/j.jde.2016.05.032.  Google Scholar

[17]

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math. (2), 168 (2008), 813-858.  doi: 10.4007/annals.2008.168.813.  Google Scholar

[18]

A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.  Google Scholar

[19]

A. Jevnikar, A note on a multiplicity result for the mean field equation on compact surfaces, Adv. Nonlinear Stud., 16 (2016), 221-229.  doi: 10.1515/ans-2015-5009.  Google Scholar

[20]

A. JevnikarS. Kallel and A. Malchiodi, A topological join construction and the Toda system on compact surfaces of arbitrary genus, Anal. PDE, 8 (2015), 1963-2027.  doi: 10.2140/apde.2015.8.1963.  Google Scholar

[21]

S. Kallel and R. Karoui, Symmetric joins and weighted barycenters, Adv. Nonlinear Stud., 11 (2011), 117-143.  doi: 10.1515/ans-2011-0106.  Google Scholar

[22]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[23]

M. Lucia, A deformation lemma with an application to a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138.   Google Scholar

[24]

A. Malchiodi, Topological methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst., 21 (2008), 277-294.  doi: 10.3934/dcds.2008.21.277.  Google Scholar

[25]

A. Malchiodi, Variational analysis of Toda systems, Chin. Ann. Math. Ser. B, 38 (2017), 539-562.  doi: 10.1007/s11401-017-1082-9.  Google Scholar

[26]

A. Malchiodi, A variational approach to Liouville equations, Boll. Unione Mat. Ital., 10 (2017), 75-97.  doi: 10.1007/s40574-016-0092-y.  Google Scholar

[27]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.  Google Scholar

[28]

C. B. Ndiaye, Conformal metrics with constant Q-curvature for manifolds with boundary, Comm. Anal. Geom., 16 (2008), 1049-1124.  doi: 10.4310/CAG.2008.v16.n5.a6.  Google Scholar

[29]

A. Pistoia and G. Vaira, Steady states with unbounded mass of the Keller-Segel system, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 203-222.  doi: 10.1017/S0308210513000619.  Google Scholar

[30]

G. Wang and J. Wei, Steady state solutions of a reaction-diffusion system modeling chemotaxis, Math. Nachr., 233/234 (2002), 221-236.  doi: 10.1002/1522-2616(200201)233:1<221::AID-MANA221>3.3.CO;2-D.  Google Scholar

show all references

References:
[1]

O. Agudelo and A. Pistoia, Boundary concentration phenomena for the higher-dimensional Keller-Segel system, Calc. Var. Partial Differential Equations, 55 (2016), Art. 132, 31pp. doi: 10.1007/s00526-016-1083-7.  Google Scholar

[2]

M. Ahmedou, S. Kallel and C. B. Ndiaye, The resonant boundary Q-curvature problem and boundary weighted barycenters, preprint. Google Scholar

[3]

D. BartolucciF. De Marchis and A. Malchiodi, Supercritical conformal metrics on surfaces with conical singularities, Int. Math. Res. Not. IMRN, (2011), 5625-5643.  doi: 10.1093/imrn/rnq285.  Google Scholar

[4]

L. Battaglia, Existence and multiplicity result for the singular {T}oda system, J. Math. Anal. Appl., 424 (2015), 49-85.  doi: 10.1016/j.jmaa.2014.10.081.  Google Scholar

[5]

L. Battaglia, B2 and G2 Toda systems on compact surfaces: A variational approach, Journal of Mathematical Physics, 58 (2017), 011506 doi: 10.1063/1.4974774.  Google Scholar

[6]

L. BattagliaA. JevnikarA. Malchiodi and D. Ruiz, A general existence result for the Toda system on compact surfaces, Adv. Math., 285 (2015), 937-979.  doi: 10.1016/j.aim.2015.07.036.  Google Scholar

[7]

L. Battaglia and A. Malchiodi, Existence and non-existence results for the SU(3) singular Toda system on compact surfaces, J. Funct. Anal., 270 (2016), 3750-3807.  doi: 10.1016/j.jfa.2015.12.011.  Google Scholar

[8]

L. Battaglia and G. Mancini, A note on compactness properties of the singular Toda system, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015), 299-307.  doi: 10.4171/RLM/708.  Google Scholar

[9]

D. BonheureJ.-B. Casteras and B. Noris, Layered solutions with unbounded mass for the Keller-Segel equation, J. Fixed Point Theory Appl., 19 (2017), 529-558.  doi: 10.1007/s11784-016-0364-2.  Google Scholar

[10]

D. Bonheure, J.-B. Casteras and B. Noris, Multiple positive solutions of the stationary Keller-Segel system, Calc. Var. Partial Differential Equations, 56 (2017), Art. 74, 35pp. doi: 10.1007/s00526-017-1163-3.  Google Scholar

[11]

H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of -Δu = V(x)eu in two dimensions, Comm. Partial Differential Equations, 16 (1991), 1223-1253.  doi: 10.1080/03605309108820797.  Google Scholar

[12]

A. Carlotto and A. Malchiodi, Weighted barycentric sets and singular Liouville equations on compact surfaces, J. Funct. Anal., 262 (2012), 409-450.  doi: 10.1016/j.jfa.2011.09.012.  Google Scholar

[13]

S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on S2, J. Differential Geom., 27 (1988), 259-296, URL http://projecteuclid.org/euclid.jdg/1214441783. Google Scholar

[14]

F. De Marchis, Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192.  doi: 10.1016/j.jfa.2010.07.003.  Google Scholar

[15]

F. De MarchisR. López-Soriano and D. Ruiz, Compactness, existence and multiplicity for the singular mean field problem with sign-changing potentials, J. Math. Pures Appl. (9), 115 (2018), 237-267.  doi: 10.1016/j.matpur.2017.11.007.  Google Scholar

[16]

M. del PinoA. Pistoia and G. Vaira, Large mass boundary condensation patterns in the stationary Keller-Segel system, J. Differential Equations, 261 (2016), 3414-3462.  doi: 10.1016/j.jde.2016.05.032.  Google Scholar

[17]

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math. (2), 168 (2008), 813-858.  doi: 10.4007/annals.2008.168.813.  Google Scholar

[18]

A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.  Google Scholar

[19]

A. Jevnikar, A note on a multiplicity result for the mean field equation on compact surfaces, Adv. Nonlinear Stud., 16 (2016), 221-229.  doi: 10.1515/ans-2015-5009.  Google Scholar

[20]

A. JevnikarS. Kallel and A. Malchiodi, A topological join construction and the Toda system on compact surfaces of arbitrary genus, Anal. PDE, 8 (2015), 1963-2027.  doi: 10.2140/apde.2015.8.1963.  Google Scholar

[21]

S. Kallel and R. Karoui, Symmetric joins and weighted barycenters, Adv. Nonlinear Stud., 11 (2011), 117-143.  doi: 10.1515/ans-2011-0106.  Google Scholar

[22]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[23]

M. Lucia, A deformation lemma with an application to a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138.   Google Scholar

[24]

A. Malchiodi, Topological methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst., 21 (2008), 277-294.  doi: 10.3934/dcds.2008.21.277.  Google Scholar

[25]

A. Malchiodi, Variational analysis of Toda systems, Chin. Ann. Math. Ser. B, 38 (2017), 539-562.  doi: 10.1007/s11401-017-1082-9.  Google Scholar

[26]

A. Malchiodi, A variational approach to Liouville equations, Boll. Unione Mat. Ital., 10 (2017), 75-97.  doi: 10.1007/s40574-016-0092-y.  Google Scholar

[27]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.  Google Scholar

[28]

C. B. Ndiaye, Conformal metrics with constant Q-curvature for manifolds with boundary, Comm. Anal. Geom., 16 (2008), 1049-1124.  doi: 10.4310/CAG.2008.v16.n5.a6.  Google Scholar

[29]

A. Pistoia and G. Vaira, Steady states with unbounded mass of the Keller-Segel system, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 203-222.  doi: 10.1017/S0308210513000619.  Google Scholar

[30]

G. Wang and J. Wei, Steady state solutions of a reaction-diffusion system modeling chemotaxis, Math. Nachr., 233/234 (2002), 221-236.  doi: 10.1002/1522-2616(200201)233:1<221::AID-MANA221>3.3.CO;2-D.  Google Scholar

[1]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[2]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[3]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[4]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[5]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[6]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[7]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[8]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[9]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[10]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[11]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[12]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[14]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[15]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[16]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[17]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[18]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[19]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[20]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (141)
  • HTML views (143)
  • Cited by (2)

Other articles
by authors

[Back to Top]