\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Topological entropy of free semigroup actions for noncompact sets

  • * Corresponding author: Dongkui Ma

    * Corresponding author: Dongkui Ma 

Project supported by National Natural Science Foundation of China grant no.11771149, 11671149

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we introduce the topological entropy and lower and upper capacity topological entropies of a free semigroup action, which extends the notion of the topological entropy of a free semigroup action defined by Bufetov [10], by using the Carathéodory-Pesin structure (C-P structure). We provide some properties of these notions and give three main results. The first is the relationship between the upper capacity topological entropy of a skew-product transformation and the upper capacity topological entropy of a free semigroup action with respect to arbitrary subset. The second are a lower and a upper estimations of the topological entropy of a free semigroup action by local entropies. The third is that for any free semigroup action with $m$ generators of Lipschitz maps, topological entropy for any subset is upper bounded by the Hausdorff dimension of the subset multiplied by the maximum logarithm of the Lipschitz constants. The results of this paper generalize results of Bufetov [10], Ma et al. [26], and Misiurewicz [27].

    Mathematics Subject Classification: Primary: 37B40, 37A35; Secondary: 37C45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   R. Adler , A. Konheim  and  J. McAndrew , Topological entropy, Trans. Amer. Math. Soc., 114 (1965) , 309-319.  doi: 10.2307/1994177.
      L. Barreira , Ya. Pesin  and  J. Schmeling , On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity, Chaos, 7 (1997) , 27-38.  doi: 10.1063/1.166232.
      A. Biś , Entropies of a semigroup of maps, Discrete Contin. Dyn. Syst, 11 (2004) , 639-648.  doi: 10.3934/dcds.2004.11.639.
      A. Biś , Partial variational principle for finitely generated groups of polynomial growth and some foliated spaces, Colloq. Math., 110 (2008) , 431-449.  doi: 10.4064/cm110-2-7.
      A. Biś , An analogue of the variational principle for group and pseudogroup actions, Ann. Inst. Fourier., 63 (2013) , 839-863.  doi: 10.5802/aif.2778.
      A. Biś  and  M. Urbański , Some remarks on topological entropy of a semigroup of continuous maps, Cubo, 8 (2006) , 63-71. 
      R. Bowen , Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971) , 401-414.  doi: 10.2307/1995565.
      R. Bowen , Topological entropy for non-compact sets, Trans. Amer. Math. Soc., 184 (1973) , 125-136.  doi: 10.2307/1996403.
      M. Brin and A. Katok, On local entropy, Geometric Dynamics, Springer, Berlin, Heidelberg, 1007 (1983), 30–38. doi: 10.1007/BFb0061408.
      A. Bufetov , Topological entropy of free semigroup actions and skew-product transformations, J. Dynam. Control Systems, 5 (1999) , 137-143.  doi: 10.1023/A:1021796818247.
      M. Carvalho , F. Rodrigues  and  P. Varandas , Semigroup actions of expanding maps, J. Stat. Phys., 166 (2017) , 114-136.  doi: 10.1007/s10955-016-1697-3.
      M. Carvalho , F. Rodrigues  and  P. Varandas , A variational principle for free semigroup actions, Advances in Math., 334 (2018) , 450-487.  doi: 10.1016/j.aim.2018.06.010.
      M. Carvalho , F. Rodrigues  and  P. Varandas , Quantitative recurrence for free semigroup actions, Nonlinearity, 31 (2018) , 864-886.  doi: 10.1088/1361-6544/aa999f.
      E. C. Chen , T. Küpper  and  L. Shu , Topological entropy for divergence points, Ergodic Theory Dynam. Systems, 25 (2005) , 1173-1208.  doi: 10.1017/S0143385704000872.
      V. Climenhaga , Multifractal formalism derived from thermodynamics for general dynamical systems, Electron. Res. Announc. Math. Sci., 17 (2010) , 1-11.  doi: 10.3934/era.2010.17.1.
      X. Dai , Z. Zhou  and  X. Geng , Some relations between Hausdorff-dimensions and entropies, Sci. China Ser. A, 41 (1998) , 1068-1075.  doi: 10.1007/BF02871841.
      E. I. Dinaburg , The relation between topological entropy and metric entropy, Soviet Math. Dokl., 11 (1970) , 13-16. 
      Y. Dong and X. Tian, Multifractal analysis of the new level sets, arXiv: 1510.06514 (2015).
      S. Friedland, Entropy of graphs, semigroups and groups, London Mathematical Society Lecture Note Series, 228. Cambridge University Press, Cambridge, 1996,319–343. doi: 10.1017/CBO9780511662812.013.
      E. Ghys , R. Langevin  and  P. Walczak , Entropie geometrique des feuilletages, Acta Math., 160 (1988) , 105-142.  doi: 10.1007/BF02392274.
      S. Kolyada  and  L. Snoha , Topological entropy of nonautonomous dynamical systems, Random Comput. Dyn., 4 (1996) , 205-233. 
      X. Lin , D. Ma  and  Y. Wang , On the measure-theoretic entropy and topological pressure of free semigroup actions, Ergodic Theory Dynam. Systems, 38 (2018) , 686-716.  doi: 10.1017/etds.2016.41.
      D. Ma  and  S. Liu , Some properties of topological pressure of a semigroup of continuous maps, Dyn. Syst, 29 (2014) , 1-17.  doi: 10.1080/14689367.2013.835387.
      D. Ma  and  M. Wu , On Hausdorff dimension and topological entropy, Fractals, 18 (2010) , 363-370.  doi: 10.1142/S0218348X10004956.
      D. Ma  and  M. Wu , Topological pressure and topological entropy of a semigroup of maps, Discrete Contin. Dyn. Syst., 31 (2011) , 545-557.  doi: 10.3934/dcds.2011.31.545.
      J. H. Ma and Z. Y. Wen, A Billingsley type theorem for Bowen entropy, C. R. Math. Acad. Sci., Paris, 346 (2008), 503–507. doi: 10.1016/j.crma.2008.03.010.
      M. Misiurewicz , On Bowen definition of topological entropy, Discrete Contin. Dyn. Syst., 10 (2004) , 827-833.  doi: 10.3934/dcds.2004.10.827.
      Y. Pesin, Dimension Theory in Dynamical Systems, Chicago: The university of Chicago Press, 1997. doi: 10.7208/chicago/9780226662237.001.0001.
      C. Pfister  and  W. Sullivan , On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, 27 (2007) , 929-956.  doi: 10.1017/S0143385706000824.
      F. B. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions, J. Math. Phys., 57 (2016), 052704, 27 pp. doi: 10.1063/1.4950928.
      F. Takens  and  E. Verbitski , Multifractal analysis of local entropies for expansive homeomorphisms with specification, Comm. Math. Phys, 203 (1999) , 593-612.  doi: 10.1007/s002200050627.
      F. Takens  and  E. Verbitski , Multifractal analysis of dimensions and entropies, Regul. Chaotic Dyn., 5 (2000) , 361-382.  doi: 10.1070/rd2000v005n04ABEH000154.
      F. Takens  and  E. Verbitski , On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dynam. Systems, 23 (2003) , 317-348.  doi: 10.1017/S0143385702000913.
      Y. Wang  and  D. Ma , On the topological entropy of a semigroup of continuous maps, J. Math. Anal. Appl., 427 (2015) , 1084-1100.  doi: 10.1016/j.jmaa.2015.02.082.
      Y. Wang , D. Ma  and  X. Lin , On the topological entropy of free semigroup actions, J. Math. Anal. Appl., 435 (2016) , 1573-1590. 
      P. Waters, An Introduction to Ergodic Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
  • 加载中
SHARE

Article Metrics

HTML views(238) PDF downloads(495) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return