In this paper we introduce the topological entropy and lower and upper capacity topological entropies of a free semigroup action, which extends the notion of the topological entropy of a free semigroup action defined by Bufetov [
Citation: |
R. Adler , A. Konheim and J. McAndrew , Topological entropy, Trans. Amer. Math. Soc., 114 (1965) , 309-319. doi: 10.2307/1994177. | |
L. Barreira , Ya. Pesin and J. Schmeling , On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity, Chaos, 7 (1997) , 27-38. doi: 10.1063/1.166232. | |
A. Biś , Entropies of a semigroup of maps, Discrete Contin. Dyn. Syst, 11 (2004) , 639-648. doi: 10.3934/dcds.2004.11.639. | |
A. Biś , Partial variational principle for finitely generated groups of polynomial growth and some foliated spaces, Colloq. Math., 110 (2008) , 431-449. doi: 10.4064/cm110-2-7. | |
A. Biś , An analogue of the variational principle for group and pseudogroup actions, Ann. Inst. Fourier., 63 (2013) , 839-863. doi: 10.5802/aif.2778. | |
A. Biś and M. Urbański , Some remarks on topological entropy of a semigroup of continuous maps, Cubo, 8 (2006) , 63-71. | |
R. Bowen , Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971) , 401-414. doi: 10.2307/1995565. | |
R. Bowen , Topological entropy for non-compact sets, Trans. Amer. Math. Soc., 184 (1973) , 125-136. doi: 10.2307/1996403. | |
M. Brin and A. Katok, On local entropy, Geometric Dynamics, Springer, Berlin, Heidelberg, 1007 (1983), 30–38. doi: 10.1007/BFb0061408. | |
A. Bufetov , Topological entropy of free semigroup actions and skew-product transformations, J. Dynam. Control Systems, 5 (1999) , 137-143. doi: 10.1023/A:1021796818247. | |
M. Carvalho , F. Rodrigues and P. Varandas , Semigroup actions of expanding maps, J. Stat. Phys., 166 (2017) , 114-136. doi: 10.1007/s10955-016-1697-3. | |
M. Carvalho , F. Rodrigues and P. Varandas , A variational principle for free semigroup actions, Advances in Math., 334 (2018) , 450-487. doi: 10.1016/j.aim.2018.06.010. | |
M. Carvalho , F. Rodrigues and P. Varandas , Quantitative recurrence for free semigroup actions, Nonlinearity, 31 (2018) , 864-886. doi: 10.1088/1361-6544/aa999f. | |
E. C. Chen , T. Küpper and L. Shu , Topological entropy for divergence points, Ergodic Theory Dynam. Systems, 25 (2005) , 1173-1208. doi: 10.1017/S0143385704000872. | |
V. Climenhaga , Multifractal formalism derived from thermodynamics for general dynamical systems, Electron. Res. Announc. Math. Sci., 17 (2010) , 1-11. doi: 10.3934/era.2010.17.1. | |
X. Dai , Z. Zhou and X. Geng , Some relations between Hausdorff-dimensions and entropies, Sci. China Ser. A, 41 (1998) , 1068-1075. doi: 10.1007/BF02871841. | |
E. I. Dinaburg , The relation between topological entropy and metric entropy, Soviet Math. Dokl., 11 (1970) , 13-16. | |
Y. Dong and X. Tian, Multifractal analysis of the new level sets, arXiv: 1510.06514 (2015). | |
S. Friedland, Entropy of graphs, semigroups and groups, London Mathematical Society Lecture Note Series, 228. Cambridge University Press, Cambridge, 1996,319–343. doi: 10.1017/CBO9780511662812.013. | |
E. Ghys , R. Langevin and P. Walczak , Entropie geometrique des feuilletages, Acta Math., 160 (1988) , 105-142. doi: 10.1007/BF02392274. | |
S. Kolyada and L. Snoha , Topological entropy of nonautonomous dynamical systems, Random Comput. Dyn., 4 (1996) , 205-233. | |
X. Lin , D. Ma and Y. Wang , On the measure-theoretic entropy and topological pressure of free semigroup actions, Ergodic Theory Dynam. Systems, 38 (2018) , 686-716. doi: 10.1017/etds.2016.41. | |
D. Ma and S. Liu , Some properties of topological pressure of a semigroup of continuous maps, Dyn. Syst, 29 (2014) , 1-17. doi: 10.1080/14689367.2013.835387. | |
D. Ma and M. Wu , On Hausdorff dimension and topological entropy, Fractals, 18 (2010) , 363-370. doi: 10.1142/S0218348X10004956. | |
D. Ma and M. Wu , Topological pressure and topological entropy of a semigroup of maps, Discrete Contin. Dyn. Syst., 31 (2011) , 545-557. doi: 10.3934/dcds.2011.31.545. | |
J. H. Ma and Z. Y. Wen, A Billingsley type theorem for Bowen entropy, C. R. Math. Acad. Sci., Paris, 346 (2008), 503–507. doi: 10.1016/j.crma.2008.03.010. | |
M. Misiurewicz , On Bowen definition of topological entropy, Discrete Contin. Dyn. Syst., 10 (2004) , 827-833. doi: 10.3934/dcds.2004.10.827. | |
Y. Pesin, Dimension Theory in Dynamical Systems, Chicago: The university of Chicago Press, 1997. doi: 10.7208/chicago/9780226662237.001.0001. | |
C. Pfister and W. Sullivan , On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, 27 (2007) , 929-956. doi: 10.1017/S0143385706000824. | |
F. B. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions, J. Math. Phys., 57 (2016), 052704, 27 pp. doi: 10.1063/1.4950928. | |
F. Takens and E. Verbitski , Multifractal analysis of local entropies for expansive homeomorphisms with specification, Comm. Math. Phys, 203 (1999) , 593-612. doi: 10.1007/s002200050627. | |
F. Takens and E. Verbitski , Multifractal analysis of dimensions and entropies, Regul. Chaotic Dyn., 5 (2000) , 361-382. doi: 10.1070/rd2000v005n04ABEH000154. | |
F. Takens and E. Verbitski , On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dynam. Systems, 23 (2003) , 317-348. doi: 10.1017/S0143385702000913. | |
Y. Wang and D. Ma , On the topological entropy of a semigroup of continuous maps, J. Math. Anal. Appl., 427 (2015) , 1084-1100. doi: 10.1016/j.jmaa.2015.02.082. | |
Y. Wang , D. Ma and X. Lin , On the topological entropy of free semigroup actions, J. Math. Anal. Appl., 435 (2016) , 1573-1590. | |
P. Waters, An Introduction to Ergodic Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1982. |