February  2019, 39(2): 1019-1032. doi: 10.3934/dcds.2019042

Intermediate Lyapunov exponents for systems with periodic orbit gluing property

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

2. 

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G2G1, Canada

3. 

Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China

4. 

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

* Corresponding author: Xiaodong Wang

Received  March 2018 Revised  August 2018 Published  November 2018

We prove that the average Lyapunov exponents of asymptotically additive functions have the intermediate value property provided the dynamical system has the periodic gluing orbit property. To be precise, consider a continuous map
$f \colon X\rightarrow X$
over a compact metric space
$X$
and an asymptotically additive sequence of functions
$\Phi = \{\phi_n\colon X\rightarrow \mathbb{R}\}_{n\geq 1}$
. If
$f$
has the periodic gluing orbit property, then for any constant
$a$
satisfying
$\inf\limits_{\mu\in \mathcal M_{inv} (f,X)} \chi_\Phi(\mu) <a<\sup\limits_{\mu\in\mathcal M_{inv} (f,X)} \chi_\Phi(\mu)$
where
$\chi_\Phi(\mu) = \liminf_{n\rightarrow \infty}\int\frac1n\phi_n d\mu$
, and the infimum and supremum are taken over the set of all
$f$
-invariant probability measures, there is an ergodic measure
$\mu_a\in \mathcal M_{inv} (f,X)$
such that
$\chi_\Phi(\mu_a) = a$
and
${\rm{supp}}(\mu)=X.$
Citation: Xueting Tian, Shirou Wang, Xiaodong Wang. Intermediate Lyapunov exponents for systems with periodic orbit gluing property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1019-1032. doi: 10.3934/dcds.2019042
References:
[1]

L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics, Basel: Birkhäuser, 2008.  Google Scholar

[2]

L. Barreira, Thermodynamic Formalism and Applications to Dimension Theory, Springer Science & Business Media, 2011. doi: 10.1007/978-3-0348-0206-2.  Google Scholar

[3]

L. Barreira and P. Doutor, Almost additive multifractal analysis, Journal de Mathématiques Pures et Appliquées, 92 (2009), 1-17.  doi: 10.1016/j.matpur.2009.04.006.  Google Scholar

[4]

L. Barreira and K. Gelfert, Multifractal analysis for Lyapunov exponents on nonconformal repellers, Comm. Math. Phys., 267 (2006), 393-418.  doi: 10.1007/s00220-006-0084-3.  Google Scholar

[5]

L. Barreira and B. Saussol, Variational principles and mixed multifractal spectra, Trans. Amer. Math. Soc., 353 (2001), 3919-3944.  doi: 10.1090/S0002-9947-01-02844-6.  Google Scholar

[6]

A. M. Blokh, Decomposition of dynamical systems on an interval, Uspekhi Mat. Nauk., 38 (1983), 179-180.   Google Scholar

[7]

T. BomfimM. J. Torres and P. Varandas, Topological features of flows with the reparameterized gluing orbit property, Journal of Differential Equations, 262 (2017), 4292-4313.  doi: 10.1016/j.jde.2017.01.008.  Google Scholar

[8]

T. Bomfim and P. Varandas, The gluing orbit property, uniform hyperbolicity and large deviations principles for semiflows, arXiv: 1507.03905. Google Scholar

[9]

C. BonattiL. Díaz and A. Gorodetski, Non-hyperbolic ergodic measures with large support, Nonlinearity, 23 (2010), 687-705.  doi: 10.1088/0951-7715/23/3/015.  Google Scholar

[10]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.2307/1996403.  Google Scholar

[11]

J. Buzzi, Specification on the interval, Trans. Amer. Math. Soc., 349 (1997), 2737-2754.  doi: 10.1090/S0002-9947-97-01873-4.  Google Scholar

[12]

M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on the Compact Space, Lecture Notes in Mathematics, Vol. 527. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[13]

L. Díaz and A. Gorodetski, Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes, Ergodic Theory and Dynam. Systems, 29 (2009), 1479-1513.  doi: 10.1017/S0143385708000849.  Google Scholar

[14]

D. Feng, Lyapunov exponents for products of matrices and multifractal analysis. Ⅰ. Positive matrices, Israel J. Math., 138 (2003), 353-376.  doi: 10.1007/BF02783432.  Google Scholar

[15]

D. Feng, Lyapunov exponents for products of matrices and multifractal analysis. Ⅱ. General matrices, Israel J. Math., 170 (2009), 355-394.  doi: 10.1007/s11856-009-0033-x.  Google Scholar

[16]

D. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Comm. Math. Phys., 297 (2010), 1-43.  doi: 10.1007/s00220-010-1031-x.  Google Scholar

[17]

D. Feng and K. S. Lau, The pressure function for products of non-negative matrices, Math. Res. Lett., 9 (2002), 363-378.  doi: 10.4310/MRL.2002.v9.n3.a10.  Google Scholar

[18]

A. Gogolev, Diffeomorphisms H¨older conjugate to Anosov diffeomorphisms, Ergodic Theory and Dynam. Systems, 30 (2010), 441-456.  doi: 10.1017/S0143385709000169.  Google Scholar

[19]

A. GorodetskiYu. IlyashenkoV. Kleptsyn and M. Nalsky, Nonremovable zero Lyapunov exponents, Funct. Anal. Appl., 39 (2005), 27-38.  doi: 10.1007/s10688-005-0014-8.  Google Scholar

[20]

L. GuanP. Sun and W. Wu, Measures of intermediate entropies and homogeneous dynamics, Nonlinearity, 30 (2017), 3349-3361.  doi: 10.1088/1361-6544/aa8040.  Google Scholar

[21]

P. A. Guihéneuf and T. Lefeuvre, On the genericity of the shadowing property for conservative homeomorphisms, Proc. Amer. Math. Soc., 146 (2018), 4225-4237.   Google Scholar

[22]

M. V. Jakobson, Absolutely continuous invariant measures for one-parameter families of one dimensional maps, Comm. Math. Phys., 81 (1981), 39-88.   Google Scholar

[23]

C. E. Pfister and W. G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Application to the β-shifts, Nonlinearity, 18 (2005), 237-261.  doi: 10.1088/0951-7715/18/1/013.  Google Scholar

[24]

C. E. Pfister and W. G. Sullivan, On the topological entropy of saturated sets, Ergodic Theory and Dynam. Systems, 27 (2007), 929-956.  doi: 10.1017/S0143385706000824.  Google Scholar

[25]

K. Sigmund, Generic properties of invariant measures for axiom A diffeomorphisms, Invention Math., 11 (1970), 99-109.  doi: 10.1007/BF01404606.  Google Scholar

[26]

K. Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc., 190 (1974), 285-299.  doi: 10.2307/1996963.  Google Scholar

[27]

P. Sun, Measures of intermediate entropies for skew product diffeomorphisms, Discrete Contin. Dyn. Syst., 27 (2010), 1219-1231.  doi: 10.3934/dcds.2010.27.1219.  Google Scholar

[28]

P. Sun, Density of metric entropies for linear toral automorphisms, Dyn. Syst., 27 (2012), 197-204.  doi: 10.1080/14689367.2011.649246.  Google Scholar

[29]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Ergodic theory and Dynam. Systems, 23 (2003), 317-348.  doi: 10.1017/S0143385702000913.  Google Scholar

[30]

D. J. Thompson, A variational principle for topological pressure for certain non-compact sets, J. Lond. Math. Soc., 80 (2009), 585-602.  doi: 10.1112/jlms/jdp041.  Google Scholar

[31]

D. J. Thompson, Irregular sets, the β-transformation and the almost specification property, Trans. Amer. Math. Soc., 364 (2012), 5395-5414.  doi: 10.1090/S0002-9947-2012-05540-1.  Google Scholar

[32]

X. Tian, Different asymptotic behavior versus same dynamical complexity: Recurrence & (ir)regularity, Advances in Mathematics, 288 (2016), 464-526.  doi: 10.1016/j.aim.2015.11.006.  Google Scholar

[33]

X. Tian and W. Sun, Diffeomorphisms with various C1 stable properties, Acta Mathematica Scientia, 32 (2012), 552-558.  doi: 10.1016/S0252-9602(12)60037-X.  Google Scholar

[34]

P. Walters, Equilibrium states for β-transformations and related transformations, Mathematische Zeitschrift, 159 (1978), 65-88.  doi: 10.1007/BF01174569.  Google Scholar

[35]

P. Walters, An Introduction to Ergodic Theory, Berlin-Heidelberg-New York: Springer-Verlag, 1982.  Google Scholar

show all references

References:
[1]

L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics, Basel: Birkhäuser, 2008.  Google Scholar

[2]

L. Barreira, Thermodynamic Formalism and Applications to Dimension Theory, Springer Science & Business Media, 2011. doi: 10.1007/978-3-0348-0206-2.  Google Scholar

[3]

L. Barreira and P. Doutor, Almost additive multifractal analysis, Journal de Mathématiques Pures et Appliquées, 92 (2009), 1-17.  doi: 10.1016/j.matpur.2009.04.006.  Google Scholar

[4]

L. Barreira and K. Gelfert, Multifractal analysis for Lyapunov exponents on nonconformal repellers, Comm. Math. Phys., 267 (2006), 393-418.  doi: 10.1007/s00220-006-0084-3.  Google Scholar

[5]

L. Barreira and B. Saussol, Variational principles and mixed multifractal spectra, Trans. Amer. Math. Soc., 353 (2001), 3919-3944.  doi: 10.1090/S0002-9947-01-02844-6.  Google Scholar

[6]

A. M. Blokh, Decomposition of dynamical systems on an interval, Uspekhi Mat. Nauk., 38 (1983), 179-180.   Google Scholar

[7]

T. BomfimM. J. Torres and P. Varandas, Topological features of flows with the reparameterized gluing orbit property, Journal of Differential Equations, 262 (2017), 4292-4313.  doi: 10.1016/j.jde.2017.01.008.  Google Scholar

[8]

T. Bomfim and P. Varandas, The gluing orbit property, uniform hyperbolicity and large deviations principles for semiflows, arXiv: 1507.03905. Google Scholar

[9]

C. BonattiL. Díaz and A. Gorodetski, Non-hyperbolic ergodic measures with large support, Nonlinearity, 23 (2010), 687-705.  doi: 10.1088/0951-7715/23/3/015.  Google Scholar

[10]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.2307/1996403.  Google Scholar

[11]

J. Buzzi, Specification on the interval, Trans. Amer. Math. Soc., 349 (1997), 2737-2754.  doi: 10.1090/S0002-9947-97-01873-4.  Google Scholar

[12]

M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on the Compact Space, Lecture Notes in Mathematics, Vol. 527. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[13]

L. Díaz and A. Gorodetski, Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes, Ergodic Theory and Dynam. Systems, 29 (2009), 1479-1513.  doi: 10.1017/S0143385708000849.  Google Scholar

[14]

D. Feng, Lyapunov exponents for products of matrices and multifractal analysis. Ⅰ. Positive matrices, Israel J. Math., 138 (2003), 353-376.  doi: 10.1007/BF02783432.  Google Scholar

[15]

D. Feng, Lyapunov exponents for products of matrices and multifractal analysis. Ⅱ. General matrices, Israel J. Math., 170 (2009), 355-394.  doi: 10.1007/s11856-009-0033-x.  Google Scholar

[16]

D. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Comm. Math. Phys., 297 (2010), 1-43.  doi: 10.1007/s00220-010-1031-x.  Google Scholar

[17]

D. Feng and K. S. Lau, The pressure function for products of non-negative matrices, Math. Res. Lett., 9 (2002), 363-378.  doi: 10.4310/MRL.2002.v9.n3.a10.  Google Scholar

[18]

A. Gogolev, Diffeomorphisms H¨older conjugate to Anosov diffeomorphisms, Ergodic Theory and Dynam. Systems, 30 (2010), 441-456.  doi: 10.1017/S0143385709000169.  Google Scholar

[19]

A. GorodetskiYu. IlyashenkoV. Kleptsyn and M. Nalsky, Nonremovable zero Lyapunov exponents, Funct. Anal. Appl., 39 (2005), 27-38.  doi: 10.1007/s10688-005-0014-8.  Google Scholar

[20]

L. GuanP. Sun and W. Wu, Measures of intermediate entropies and homogeneous dynamics, Nonlinearity, 30 (2017), 3349-3361.  doi: 10.1088/1361-6544/aa8040.  Google Scholar

[21]

P. A. Guihéneuf and T. Lefeuvre, On the genericity of the shadowing property for conservative homeomorphisms, Proc. Amer. Math. Soc., 146 (2018), 4225-4237.   Google Scholar

[22]

M. V. Jakobson, Absolutely continuous invariant measures for one-parameter families of one dimensional maps, Comm. Math. Phys., 81 (1981), 39-88.   Google Scholar

[23]

C. E. Pfister and W. G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Application to the β-shifts, Nonlinearity, 18 (2005), 237-261.  doi: 10.1088/0951-7715/18/1/013.  Google Scholar

[24]

C. E. Pfister and W. G. Sullivan, On the topological entropy of saturated sets, Ergodic Theory and Dynam. Systems, 27 (2007), 929-956.  doi: 10.1017/S0143385706000824.  Google Scholar

[25]

K. Sigmund, Generic properties of invariant measures for axiom A diffeomorphisms, Invention Math., 11 (1970), 99-109.  doi: 10.1007/BF01404606.  Google Scholar

[26]

K. Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc., 190 (1974), 285-299.  doi: 10.2307/1996963.  Google Scholar

[27]

P. Sun, Measures of intermediate entropies for skew product diffeomorphisms, Discrete Contin. Dyn. Syst., 27 (2010), 1219-1231.  doi: 10.3934/dcds.2010.27.1219.  Google Scholar

[28]

P. Sun, Density of metric entropies for linear toral automorphisms, Dyn. Syst., 27 (2012), 197-204.  doi: 10.1080/14689367.2011.649246.  Google Scholar

[29]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Ergodic theory and Dynam. Systems, 23 (2003), 317-348.  doi: 10.1017/S0143385702000913.  Google Scholar

[30]

D. J. Thompson, A variational principle for topological pressure for certain non-compact sets, J. Lond. Math. Soc., 80 (2009), 585-602.  doi: 10.1112/jlms/jdp041.  Google Scholar

[31]

D. J. Thompson, Irregular sets, the β-transformation and the almost specification property, Trans. Amer. Math. Soc., 364 (2012), 5395-5414.  doi: 10.1090/S0002-9947-2012-05540-1.  Google Scholar

[32]

X. Tian, Different asymptotic behavior versus same dynamical complexity: Recurrence & (ir)regularity, Advances in Mathematics, 288 (2016), 464-526.  doi: 10.1016/j.aim.2015.11.006.  Google Scholar

[33]

X. Tian and W. Sun, Diffeomorphisms with various C1 stable properties, Acta Mathematica Scientia, 32 (2012), 552-558.  doi: 10.1016/S0252-9602(12)60037-X.  Google Scholar

[34]

P. Walters, Equilibrium states for β-transformations and related transformations, Mathematische Zeitschrift, 159 (1978), 65-88.  doi: 10.1007/BF01174569.  Google Scholar

[35]

P. Walters, An Introduction to Ergodic Theory, Berlin-Heidelberg-New York: Springer-Verlag, 1982.  Google Scholar

[1]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[2]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[3]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[4]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[5]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[6]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[7]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[8]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[9]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[10]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[11]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[12]

Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069

[13]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[14]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[15]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[16]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[17]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[18]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[19]

Meenakshi Rana, Shruti Sharma. Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29 (1) : 1803-1818. doi: 10.3934/era.2020092

[20]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (168)
  • HTML views (154)
  • Cited by (2)

Other articles
by authors

[Back to Top]