Recently a generalization of shifts of finite type to the infinite alphabet case was proposed, in connection with the theory of ultragraph C*-algebras. In this work we characterize the class of continuous shift commuting maps between these spaces. In particular, we prove a Curtis-Hedlund-Lyndon type theorem and use it to completely characterize continuous, shift commuting, length preserving maps in terms of generalized sliding block codes.
Citation: |
[1] |
T. M. Carlsen, E. Ruiz, A. Sims and M. Tomforde, Reconstruction of groupoids and C*-rigidity of dynamical systems, preprint, arXiv: 1711.01052.
![]() |
[2] |
G. G. Castro and D. Gonçalves,
KMS and ground states on ultragraph C*-algebras,
Integral Equations and Operator Theory, 90 (2018), 63.
doi: 10.1007/s00020-018-2490-2.![]() ![]() ![]() |
[3] |
T. Ceccherini-Silberstein and M. Coornaert,
Cellular Automata and Groups, Springer Monographs in Mathematics, Springer-Verlag, 2010.
doi: 10.1007/978-3-642-14034-1.![]() ![]() ![]() |
[4] |
J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math., 56 (1980), 251-268.
doi: 10.1007/BF01390048.![]() ![]() ![]() |
[5] |
D. Fiebig, Factor maps, entropy and fiber cardinality for Markov shifts, Rocky Mountain J. Math., 31 (2001), 955-986.
doi: 10.1216/rmjm/1020171674.![]() ![]() ![]() |
[6] |
D. Fiebig, Graphs with pre-assigned Salama entropies and optimal degress, Ergodic Theory Dynam. Systems, 23 (2003), 1093-1124.
doi: 10.1017/S014338570200161X.![]() ![]() ![]() |
[7] |
D. Fiebig and U.-R. Fiebig, Topological boundaries for countable state Markov shifts, Proc. London Math. Soc., 70 (1995), 625-643.
doi: 10.1112/plms/s3-70.3.625.![]() ![]() ![]() |
[8] |
D. Fiebig and U.-R. Fiebig, Embedding theorems for locally compact Markov shifts, Ergodic Theory Dynam. Systems, 25 (2005), 107-131.
doi: 10.1017/S0143385704000689.![]() ![]() ![]() |
[9] |
D. Gonçalves, H. Li and D. Royer, Branching systems and general Cuntz-Krieger uniqueness theorem for ultragraph C*-algebras,
Internat. J. Math., 27 (2016), 1650083, 26pp.
doi: 10.1142/S0129167X1650083X.![]() ![]() ![]() |
[10] |
D. Gonçalves and D. Royer, (M+1)-step shift spaces that are not conjugate to M-step shift spaces, Bull. Sci. Math., 139 (2015), 178-183.
doi: 10.1016/j.bulsci.2014.08.007.![]() ![]() ![]() |
[11] |
D. Gonçalves and D. Royer, Ultragraphs and shift spaces over infinite alphabets, Bull. Sci. Math., 141 (2017), 25-45.
doi: 10.1016/j.bulsci.2016.10.002.![]() ![]() ![]() |
[12] |
D. Gonçalves and D. Royer, Infinite alphabet edge shift spaces via ultragraphs and their C*-algebras,
Int. Math. Res. Not., rnx175.
doi: 10.1093/imrn/rnx175.![]() ![]() |
[13] |
D. Gonçalves, M. Sobottka and C. Starling, Sliding block codes between shift spaces over infinite alphabets, Math. Nachr., 289 (2016), 2178-2191.
doi: 10.1002/mana.201500309.![]() ![]() ![]() |
[14] |
D. Gonçalves, M. Sobottka and C. Starling, Two-sided shift spaces over infinite alphabets, J. Aust. Math. Soc., 103 (2017), 357-386.
doi: 10.1017/S1446788717000039.![]() ![]() ![]() |
[15] |
D. Gonçalves, M. Sobottka and C. Starling, Inverse semigroup shifts over countable alphabets, Semigroup Forum, 96 (2018), 203-240.
doi: 10.1007/s00233-017-9858-5.![]() ![]() ![]() |
[16] |
D. Gonçalves and B. B. Uggioni, Li-Yorke chaos for ultragraph shift spaces, preprint, arXiv: 1806.07927.
![]() |
[17] |
T. Katsura, P. S. Muhly, A. Sims and M. Tomforde, Graph algebras, Exel-Laca algebras, and ultragraph algebras coincide up to Morita equivalence, J. Reine Angew. Math., 640 (2010), 135-165.
doi: 10.1515/CRELLE.2010.023.![]() ![]() ![]() |
[18] |
B. P. Kitchens,
Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts, Springer-Verlag, 1998.
doi: 10.1007/978-3-642-58822-8.![]() ![]() ![]() |
[19] |
D. A. Lind and B. Marcus,
An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511626302.![]() ![]() ![]() |
[20] |
A. Marrero and P. S. Muhly, Groupoid and inverse semigroup presentations of ultragraph C*-algebras, Semigroup Forum, 77 (2008), 399-422.
doi: 10.1007/s00233-008-9046-8.![]() ![]() ![]() |
[21] |
W. Ott, M. Tomforde and P. N. Willis, One-sided shift spaces over infinite alphabets,
New York J. Math., NYJM Monographs, 5 (2014), 54 pp.
![]() ![]() |
[22] |
K. Petersen, Chains, entropy, coding, Ergodic Theory Dynam. Systems, 6 (1986), 415-448.
doi: 10.1017/S014338570000359X.![]() ![]() ![]() |
[23] |
I. A. Salama, Topological entropy and recurrence of countable chains, Pacific J. Math., 134 (1988), 325-341.
![]() ![]() |
[24] |
M. Sobottka and D. Gonçalves, A note on the definition of sliding block codes and the Curtis-Hedlund-Lyndon Theorem, J. Cell. Autom., 12 (2017), 209-215.
![]() ![]() |
[25] |
M. Tomforde, A unified approach to Exel-Laca algebras and C*-algebras associated to graphs, J. Operator Theory, 50 (2003), 345-368.
![]() ![]() |
[26] |
M. Tomforde, Simplicity of ultragraph algebras, Indiana Univ. Math. J., 52 (2003), 901-925.
doi: 10.1512/iumj.2003.52.2209.![]() ![]() ![]() |
[27] |
J. von Neumann,
Theory of Self-reproducing Automata,
(edited and completed by A. W. Burks), University of Illinois Press, 1966.
![]() |
[28] |
S. B. G. Webster, The path space of a directed graph, Proc. Amer. Math. Soc., 142 (2014), 213-225.
doi: 10.1090/S0002-9939-2013-11755-7.![]() ![]() ![]() |