In this paper, we prove the existence of extremal functions for the best constant of embedding from anisotropic space, allowing some of the Sobolev exponents to be equal to $1$. We prove also that the extremal functions satisfy a partial differential equation involving the $1$ Laplacian.
Citation: |
A. Alvino
, V. Ferone
, G. Trombetti
and P.-L. Lions
, Convex symmetrization and applications, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 14 (1997)
, 275-293.
doi: 10.1016/S0294-1449(97)80147-3.![]() ![]() ![]() |
|
G. Anzellotti
, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl., 135 (1983)
, 293-318.
doi: 10.1007/BF01781073.![]() ![]() ![]() |
|
T. Aubin
, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry, 11 (1976)
, 573-598.
![]() ![]() |
|
L. Boccardo
, P. Marcellini
and C. Sbordone
, $L^∞$ -regularity for variational problems with sharp nonstandard growth conditions, Boll. Un. Mat. Ital. A, 4 (1990)
, 219-225.
![]() ![]() |
|
H. Brezis
and E. Lieb
, A relation between pointwise convergence of functions and convergence
of functionals, Proc. Amer. Math. Soc., 88 (1983)
, 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
|
D. Cordero-Erausquin
, B. Nazaret
and C. Villani
, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Advances in Mathematics, 182 (2004)
, 307-332.
doi: 10.1016/S0001-8708(03)00080-X.![]() ![]() ![]() |
|
G. Cupini
, P. Marcellini
and E. Mascolo
, Regularity under sharp anisotropic general growth conditions, Discrete and Continuous Dynamical Systems, 11 (2009)
, 67-86.
doi: 10.3934/dcdsb.2009.11.67.![]() ![]() ![]() |
|
F. Demengel
, On some nonlinear partial differential equations involving the "1"-Laplacian and critical Sobolev exponent, ESAIM: Control, Optimisation and Calculus of Variations, 4 (1999)
, 667-686.
doi: 10.1051/cocv:1999126.![]() ![]() ![]() |
|
F. Demengel
, Some Existence's results for non coercive "$1$-Laplacian" operator, Asymptotic Analysis, 43 (2005)
, 287-322.
![]() ![]() |
|
F. Demengel
, Functions locally $1$-harmonic, Applicable Analysis, 83 (2004)
, 865-896.
doi: 10.1080/00036810310001621369.![]() ![]() ![]() |
|
F. Demengel
and R. Temam
, Functions of a measure and its applications, Indiana Math. Journal, 33 (1984)
, 673-709.
doi: 10.1512/iumj.1984.33.33036.![]() ![]() ![]() |
|
J. Dieudonné,
Eléments D'analyse, 2, Gauthiers Villars 1968.
![]() ![]() |
|
T. Dumas,
Existence de Solutions Pour des Équations Apparentées au 1 Laplacien Anisotrope, Thèse d'Université, Université de Cergy, 2018.
![]() |
|
L. Esposito
, F. Leonetti
and G. Mingione
, Higher integrability for minimizers of integral functionals with $(p, q)$ growth, J. Differential Equations, 157 (1999)
, 414-438.
doi: 10.1006/jdeq.1998.3614.![]() ![]() ![]() |
|
L. Esposito
, F. Leonetti
and G. Mingione
, Sharp regularity for functionals with $(p, q)$ growth, J. Differential Equations, 204 (2004)
, 5-55.
doi: 10.1016/j.jde.2003.11.007.![]() ![]() ![]() |
|
I. Fragala
, F. Gazzola
and B. Kawohl
, Existence and nonexistence results for anisotropic quasilinear elliptic equation, Ann. I. H. Poincaré Anal., 21 (2004)
, 715-734.
doi: 10.1016/j.anihpc.2003.12.001.![]() ![]() ![]() |
|
N. Fusco
and C. Sbordone
, Local boundedness of minimizers in a limit case, Manuscripta Math., 69 (1990)
, 19-25.
doi: 10.1007/BF02567909.![]() ![]() |
|
M. Giaquinta
, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987)
, 245-248.
doi: 10.1007/BF01158049.![]() ![]() ![]() |
|
E. Giusti,
Minimal Surfaces and Functions of Bounded Variation, Birkhauser, 1984.
doi: 10.1007/978-1-4684-9486-0.![]() ![]() ![]() |
|
A. El Hamidi
and J. M. Rakotoson
, Compactness and quasilinear problems with critical exponents, Differential Integral Equations, 18 (2005)
, 1201-1220.
![]() ![]() |
|
A. El Hamidi
and J. M. Rakotoson
, Extremal functions for the anisotropic Sobolev inequalities, Ann. I.H. Poincaré, Analyse non Linéaire, 24 (2007)
, 741-756.
doi: 10.1016/j.anihpc.2006.06.003.![]() ![]() ![]() |
|
S. N. Kruzhkov
and I. M. Kolodii
, On the theory of embedding of anisotropic Sobolev spaces, Uspekhi Mat. Nauk, 38 (1983)
, 207-208.
![]() ![]() |
|
S. N. Kruzhkov
and A. G. Korolev
, On the imbedding theory of anisotropic function spaces,
(Russian), Dokl. Akad. Nauk SSSR, 285 (1985)
, 1054-1057.
![]() ![]() |
|
P. L. Lions
, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅰ., and Ⅱ, Ann. Inst. H. Poincar Anal. Non Lin ire 1, 1 (1985)
, 223-283.
![]() ![]() |
|
P. L. Lions
, The concentration-compactness principle in the calculus of variations. The limit case, part 1, Rev. Mat. Iberoamericana 1, 1 (1985)
, 145-201.
doi: 10.4171/RMI/6.![]() ![]() ![]() |
|
P. L. Lions
, The concentration-compactness principle in the calculus of variations. The limit case, part 2, Rev. Mat. Iberoamericana 1, 1 (1985)
, 45-121.
doi: 10.4171/RMI/12.![]() ![]() ![]() |
|
P. Marcellini
, Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989)
, 267-284.
doi: 10.1007/BF00251503.![]() ![]() ![]() |
|
P. Marcellini
, Regularity and existence of solutions of elliptic equations with $p- q$ growth conditions, J. Differential Equations, 90 (1991)
, 1-30.
doi: 10.1016/0022-0396(91)90158-6.![]() ![]() ![]() |
|
A. Mercaldo
, J. D. Rossi
, S. Segura de León
and C. Trombetti
, Anisotropic p, q-Laplacian equations when p goes to 1, Nonlinear Analysis, 73 (2010)
, 3546-3560.
doi: 10.1016/j.na.2010.07.030.![]() ![]() ![]() |
|
S. M. Nikolskii
, On imbedding, continuation and approximation theorems for differentiable functions of several variables, Uspehi Mat. Nauk., 6 (1961)
, 63-114.
![]() ![]() |
|
G. Strang
and R. Temam
, Duality and relaxation in the variational problems of plasticity, J. Mécanique, 19 (1980)
, 493-527.
![]() ![]() |
|
G. Talenti
, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976)
, 353-372.
doi: 10.1007/BF02418013.![]() ![]() ![]() |
|
R. Temam,
Mathematical Problems in Plasticity, Gauthiers Villars, 1983.
![]() ![]() |
|
M. Troisi
, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., 18 (1969)
, 3-24.
![]() ![]() |
|
J. Vetois
, Decay estimates and a vanishing phenomenon for the solutions of critical anisotropic equations, Adv. Math., 284 (2015)
, 122-158.
doi: 10.1016/j.aim.2015.04.029.![]() ![]() |