We give necessary and sufficient conditions for which the elliptic equation
$\Delta u = \rho (x)\Phi (u)\;\;\;\;{\rm{in}}\;\;\;\;{\mathbb{R}^d}\;\;\;(d \ge 3)$
has nontrivial bounded solutions.
Citation: |
R. Alsaedi
, H. Mâagli
, V. D. Radulescu
and N. Zeddini
, Entire bounded solutions versus fixed points for nonlinear elliptic equations with indefinite weight, Fixed Point Theory, 17 (2016)
, 255-265.
![]() ![]() |
|
D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer, London, 2001.
doi: 10.1007/978-1-4471-0233-5.![]() ![]() ![]() |
|
M. Ben Chrouda
and M. Ben Fredj
, Nonnegative entire bounded solutions to some semilinear equations involving the fractional laplacian, Potential Anal, 48 (2018)
, 495-513.
doi: 10.1007/s11118-017-9645-7.![]() ![]() ![]() |
|
J. Bliedtner and W. Hansen, Potential Theory, Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-642-71131-2.![]() ![]() ![]() |
|
K. L. Chung, Lectures from Markov Processes to Brownian Motion, Springer, Verlag, Berlin, 1982.
![]() ![]() |
|
Ph. Clément
and G. Sweers
, Getting a solution between sub and supersolutions without monotone iteration, Rend. Istit. Mat. Univ. Trieste, 19 (1987)
, 189-194.
![]() ![]() |
|
L. Dupaigne
, M. Ghergu
, O. Goubet
and G. Warnault
, Entire large solutions for semilinear elliptic equations, J. Differential Equations, 253 (2012)
, 2224-2251.
doi: 10.1016/j.jde.2012.05.024.![]() ![]() ![]() |
|
E. B. Dynkin, Diffusions, Superdiffusions and Partial Differential Equations, American Math. Soc, Providence, Rhode Island, Colloquium Publications, 2002.
doi: 10.1090/coll/050.![]() ![]() ![]() |
|
K. El Mabrouk
, Entire bounded solutions for a class of sublinear elliptic equations, Nonlinear Anal, 58 (2004)
, 205-218.
doi: 10.1016/j.na.2004.01.004.![]() ![]() ![]() |
|
N. Kawano
, On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J, 14 (1984)
, 125-158.
![]() ![]() |
|
O. D. Kellogg, Foundations of Potential Theory, Reprint from the first edition of 1929. Die Grundlehren der Mathematischen Wissenschaften, Band 31 Springer-Verlag, Berlin-New York, 1967.
![]() ![]() |
|
A. V. Lair
and A. W. Wood
, Large solutions of sublinear elliptic equations, Nonlinear Anal, 39 (2000)
, 745-753.
doi: 10.1016/S0362-546X(98)00233-8.![]() ![]() ![]() |
|
J. F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Originally published by Birkhliuser Verlag, 1999.
doi: 10.1007/978-3-0348-8683-3.![]() ![]() ![]() |
|
M. Marcus and L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures, De Gruyter Series in Nonlinear Analysis and Applications, 21 2014.
![]() ![]() |
|
M. Naito
, A note on bounded positive entire solutions of semilinear elliptic equations, Hiroshima Math. J, 14 (1984)
, 211-214.
![]() ![]() |
|
W. M. Ni
, On the elliptic equation $Δ u + K(x) u^{\frac{n+2}{n-2}}=0$, its generalizations and applications in geometry, Indiana Univ. Math. J, 31 (1982)
, 493-529.
doi: 10.1512/iumj.1982.31.31040.![]() ![]() ![]() |
|
S. C. Port and C. J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, New York-London, 1978.
![]() ![]() |
|
D. Sattinger, Topics in Stability and Bifurcation Theory, Lecture notes in Mathematics 309, Springer-Verlag, Berlin/Heidelberg/New york, 1973.
![]() ![]() |
|
M. Sharpe, General Theory of Markov Processes, Academic Press, Boston, 1988.
![]() ![]() |
|
H. Yamabe
, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J, 12 (1960)
, 21-37.
![]() ![]() |
|
D. Ye
and F. Zhou
, Invariant criteria for existence of bounded positive solutions, Discrete Contin. Dynam. Systems, 12 (2005)
, 413-424.
doi: 10.3934/dcds.2005.12.413.![]() ![]() ![]() |