We consider the nonlinear Schrödinger equation
${u_t} = i\Delta u + {\left| u \right|^\alpha }u\;\;\;\;{\rm{on}}\;\;\;{\mathbb{R}^N},\;\;\alpha >0$
for $H^1$-subcritical or critical nonlinearities: $(N-2) α ≤ 4$. Under the additional technical assumptions $α≥ 2$ (and thus $N≤4$), we construct $H^1$ solutions that blow up in finite time with explicit blow-up profiles and blow-up rates. In particular, blowup can occur at any given finite set of points of $\mathbb{R}^N$.
The construction involves explicit functions $U$, solutions of the ordinary differential equation $U_t=|U|^α U$. In the simplest case, $U(t,x)=(|x|^k-α t)^{-\frac 1α}$ for $t<0$, $x∈ \mathbb{R}^N$. For $k$ sufficiently large, $U$ satisfies $|Δ U|\ll U_t$ close to the blow-up point $(t,x)=(0,0)$, so that it is a suitable approximate solution of the problem. To construct an actual solution u close to U, we use energy estimates and a compactness argument.
Citation: |
S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differential Equations and their Applications, 17. Birkhäuser Boston, Inc., Boston, MA, 1995.
doi: 10.1007/978-1-4612-2578-2.![]() ![]() ![]() |
|
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010.![]() ![]() ![]() |
|
T. Cazenave
, S. Correia
, F. Dickstein
and F. B. Weissler
, A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation, São Paulo J. Math. Sci., 9 (2015)
, 146-161.
doi: 10.1007/s40863-015-0020-6.![]() ![]() ![]() |
|
C. Collot, T. -E. Ghoul and N. Masmoudi, Singularity formation for Burgers equation with transverse viscosity, preprint, arXiv: 1803.07826.
![]() |
|
Y. Martel
, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005)
, 1103-1140.
doi: 10.1353/ajm.2005.0033.![]() ![]() ![]() |
|
F. Merle
, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990)
, 223-240.
doi: 10.1007/BF02096981.![]() ![]() ![]() |
|
F. Merle
and H. Zaag
, O.D.E. type behavior of blow-up solutions of nonlinear heat equations, Current developments in partial differential equations (Temuco, 1999), Discrete Contin. Dyn. Syst., 8 (2002)
, 435-450.
doi: 10.3934/dcds.2002.8.435.![]() ![]() ![]() |
|
F. Merle and H. Zaag, Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension, Séminaire: Équations aux Dérivées Partielles. 2009-2010, Exp. No. Ⅺ, 10 pp., Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2012, Available from http://sedp.cedram.org/sedp-bin/fitem?id=SEDP_2009-2010____A11_0
![]() ![]() |
|
F. Merle
and H. Zaag
, On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., 333 (2015)
, 1529-1562.
doi: 10.1007/s00220-014-2132-8.![]() ![]() ![]() |
|
N. Nouaili
and H. Zaag
, Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case, Arch. Ration. Mech. Anal., 228 (2018)
, 995-1058.
doi: 10.1007/s00205-017-1211-3.![]() ![]() ![]() |
|
T. Ozawa
, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006)
, 403-408.
doi: 10.1007/s00526-005-0349-2.![]() ![]() ![]() |
|
P. Raphaël
and J. Szeftel
, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., 24 (2011)
, 471-546.
doi: 10.1090/S0894-0347-2010-00688-1.![]() ![]() ![]() |
|
J. Speck, Stable ODE-type blowup for some quasilinear wave equations with derivative-quadratic nonlinearity, preprint, arXiv: 1709.04778.
![]() |