• Previous Article
    Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity
  • DCDS Home
  • This Issue
  • Next Article
    Characterization for the existence of bounded solutions to elliptic equations
February  2019, 39(2): 1171-1183. doi: 10.3934/dcds.2019050

Finite-time blowup for a Schrödinger equation with nonlinear source term

1. 

Sorbonne Université & CNRS, Laboratoire Jacques-Louis Lions, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France

2. 

CMLS, École Polytechnique, CNRS, 91128 Palaiseau Cedex, France

3. 

Wu Wen-Tsun Key Laboratory of Mathematics and School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China

* Corresponding author

Received  May 2018 Published  November 2018

Fund Project: The third author thanks the hospitality of Professor F. Merle when he visited IHES and Professor Y. Martel when he visited CMLS, École Polytechnique, where part of the work was done. He is partly supported by grant NSFC of China no. 11771415.

We consider the nonlinear Schrödinger equation
${u_t} = i\Delta u + {\left| u \right|^\alpha }u\;\;\;\;{\rm{on}}\;\;\;{\mathbb{R}^N},\;\;\alpha >0$
for
$H^1$
-subcritical or critical nonlinearities:
$(N-2) α ≤ 4$
. Under the additional technical assumptions
$α≥ 2$
(and thus
$N≤4$
), we construct
$H^1$
solutions that blow up in finite time with explicit blow-up profiles and blow-up rates. In particular, blowup can occur at any given finite set of points of
$\mathbb{R}^N$
.
The construction involves explicit functions
$U$
, solutions of the ordinary differential equation
$U_t=|U|^α U$
. In the simplest case,
$U(t,x)=(|x|^k-α t)^{-\frac 1α}$
for
$t<0$
,
$x∈ \mathbb{R}^N$
. For
$k$
sufficiently large,
$U$
satisfies
$|Δ U|\ll U_t$
close to the blow-up point
$(t,x)=(0,0)$
, so that it is a suitable approximate solution of the problem. To construct an actual solution u close to U, we use energy estimates and a compactness argument.
Citation: Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050
References:
[1]

S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differential Equations and their Applications, 17. Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-1-4612-2578-2.  Google Scholar

[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[3]

T. CazenaveS. CorreiaF. Dickstein and F. B. Weissler, A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation, São Paulo J. Math. Sci., 9 (2015), 146-161.  doi: 10.1007/s40863-015-0020-6.  Google Scholar

[4]

C. Collot, T. -E. Ghoul and N. Masmoudi, Singularity formation for Burgers equation with transverse viscosity, preprint, arXiv: 1803.07826. Google Scholar

[5]

Y. Martel, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005), 1103-1140.  doi: 10.1353/ajm.2005.0033.  Google Scholar

[6]

F. Merle, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.  doi: 10.1007/BF02096981.  Google Scholar

[7]

F. Merle and H. Zaag, O.D.E. type behavior of blow-up solutions of nonlinear heat equations, Current developments in partial differential equations (Temuco, 1999), Discrete Contin. Dyn. Syst., 8 (2002), 435-450.  doi: 10.3934/dcds.2002.8.435.  Google Scholar

[8]

F. Merle and H. Zaag, Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension, Séminaire: Équations aux Dérivées Partielles. 2009-2010, Exp. No. Ⅺ, 10 pp., Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2012, Available from http://sedp.cedram.org/sedp-bin/fitem?id=SEDP_2009-2010____A11_0  Google Scholar

[9]

F. Merle and H. Zaag, On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., 333 (2015), 1529-1562.  doi: 10.1007/s00220-014-2132-8.  Google Scholar

[10]

N. Nouaili and H. Zaag, Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case, Arch. Ration. Mech. Anal., 228 (2018), 995-1058.  doi: 10.1007/s00205-017-1211-3.  Google Scholar

[11]

T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408.  doi: 10.1007/s00526-005-0349-2.  Google Scholar

[12]

P. Raphaël and J. Szeftel, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., 24 (2011), 471-546.  doi: 10.1090/S0894-0347-2010-00688-1.  Google Scholar

[13]

J. Speck, Stable ODE-type blowup for some quasilinear wave equations with derivative-quadratic nonlinearity, preprint, arXiv: 1709.04778. Google Scholar

show all references

References:
[1]

S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differential Equations and their Applications, 17. Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-1-4612-2578-2.  Google Scholar

[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[3]

T. CazenaveS. CorreiaF. Dickstein and F. B. Weissler, A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation, São Paulo J. Math. Sci., 9 (2015), 146-161.  doi: 10.1007/s40863-015-0020-6.  Google Scholar

[4]

C. Collot, T. -E. Ghoul and N. Masmoudi, Singularity formation for Burgers equation with transverse viscosity, preprint, arXiv: 1803.07826. Google Scholar

[5]

Y. Martel, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005), 1103-1140.  doi: 10.1353/ajm.2005.0033.  Google Scholar

[6]

F. Merle, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.  doi: 10.1007/BF02096981.  Google Scholar

[7]

F. Merle and H. Zaag, O.D.E. type behavior of blow-up solutions of nonlinear heat equations, Current developments in partial differential equations (Temuco, 1999), Discrete Contin. Dyn. Syst., 8 (2002), 435-450.  doi: 10.3934/dcds.2002.8.435.  Google Scholar

[8]

F. Merle and H. Zaag, Isolatedness of characteristic points at blow-up for a semilinear wave equation in one space dimension, Séminaire: Équations aux Dérivées Partielles. 2009-2010, Exp. No. Ⅺ, 10 pp., Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2012, Available from http://sedp.cedram.org/sedp-bin/fitem?id=SEDP_2009-2010____A11_0  Google Scholar

[9]

F. Merle and H. Zaag, On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., 333 (2015), 1529-1562.  doi: 10.1007/s00220-014-2132-8.  Google Scholar

[10]

N. Nouaili and H. Zaag, Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case, Arch. Ration. Mech. Anal., 228 (2018), 995-1058.  doi: 10.1007/s00205-017-1211-3.  Google Scholar

[11]

T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408.  doi: 10.1007/s00526-005-0349-2.  Google Scholar

[12]

P. Raphaël and J. Szeftel, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., 24 (2011), 471-546.  doi: 10.1090/S0894-0347-2010-00688-1.  Google Scholar

[13]

J. Speck, Stable ODE-type blowup for some quasilinear wave equations with derivative-quadratic nonlinearity, preprint, arXiv: 1709.04778. Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[2]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[17]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[18]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[19]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[20]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (219)
  • HTML views (178)
  • Cited by (3)

Other articles
by authors

[Back to Top]