February  2019, 39(2): 1185-1203. doi: 10.3934/dcds.2019051

Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

* Corresponding author: Hua Chen

Received  June 2018 Revised  August 2018 Published  November 2018

Fund Project: This work is supported by the NSFC under the grant 11631011.

In this paper, we study the initial-boundary value problem for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity $u_t-\triangle_{X} u_t-\triangle_{X} u=u\log|u|$, where $X=(X_1, X_2, ··· , X_m)$ is an infinitely degenerate system of vector fields, and $\triangle_{X}:=\sum^{m}_{j=1}X^{2}_{j}$ is an infinitely degenerate elliptic operator. Using potential well method, we first prove the invariance of some sets and vacuum isolating of solutions. Then, by the Galerkin approximation technique, the logarithmic Sobolev inequality and Poincaré inequality, we obtain the global existence and blow-up at $+∞$ of solutions with low initial energy or critical initial energy, and discuss the asymptotic behavior of the solutions.

Citation: Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051
References:
[1]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser., 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[2]

G. BarenblatI. Zheltov and I. Kochiva, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.   Google Scholar

[3]

E. D. Benedetto and M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J., 30 (1981), 821-854.  doi: 10.1512/iumj.1981.30.30062.  Google Scholar

[4]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[5]

H. Brill, A semilinear Sobolev evolution equation in a Banach space, J. Differential Equations, 24 (1977), 412-425.  doi: 10.1016/0022-0396(77)90009-2.  Google Scholar

[6]

Y. CaoJ. Yin and C. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations, 246 (2009), 4568-4590.  doi: 10.1016/j.jde.2009.03.021.  Google Scholar

[7]

H. Chen and K. Li, The existence and regularity of multiple solutions for a class of infinitely degenerate elliptic equations, Math Nach, 282 (2009), 368-385.  doi: 10.1002/mana.200710742.  Google Scholar

[8]

H. ChenP. Luo and G. Liu, Global solution and blow up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[9]

H. ChenP. Luo and S. Tian, Existence and regularity of multiple solutions forinfinitely degenerate nonlinear elliptic equations with singular potential, J. Differ Equ., 257 (2014), 3300-3333.  doi: 10.1016/j.jde.2014.06.014.  Google Scholar

[10]

H. ChenP. Luo and S. Tian, Multiplicity and regularity of solutions for infinitely degenerate elliptic equations with a free perturbation, J. Math. Pures Appl., 103 (2015), 849-867.  doi: 10.1016/j.matpur.2014.09.004.  Google Scholar

[11]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 285 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[12]

M. Christ, Hypoellipticity in the infinitely degenerate regime, Complex Analysis and Geometry (Columbus, OH, 1999), 59-84, Ohio State Univ. Math. Res. Inst. Publ., 9, de Gruyter, Berlin, 2001.  Google Scholar

[13]

C. David and W. Jet, Asymptotic behaviour of the fundamental solution to the equation of heat conduction in two temperatures, J. Math. Anal. Appl., 69 (1979), 411-418.  doi: 10.1016/0022-247X(79)90152-5.  Google Scholar

[14]

V. R. Gopala Rao and T. W. Ting, Solutions of pseudo-heat equations in the whole space, Arch. Ration. Mech. Anal., 49 (1972/73), 57-78.  doi: 10.1007/BF00281474.  Google Scholar

[15]

L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.  doi: 10.1007/BF02392081.  Google Scholar

[16]

S. JiJ. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 261 (2016), 5446-5464.  doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[17]

J. J. Kohn, Hypoellipticity of some degenerate subelliptic operators, J. Funct. Anal., 159 (1998), 203-216.  doi: 10.1006/jfan.1998.3289.  Google Scholar

[18]

J. J. Kohn, Hypoellipticity at points of infinite type, Proceedings of the International Conference on Analysis, Geometry, Number Theory in honor of Leon Ehrenpreis (Philadelphia, 1998), Contemp. Math., 251 (2000), 393-398.  doi: 10.1090/conm/251/03882.  Google Scholar

[19]

M. Koike, A note on hypoellipticity for degenerate elliptic operators, Publ. Res. Inst. Math. Sci., 27 (1991), 995-1000.  doi: 10.2977/prims/1195169008.  Google Scholar

[20]

V. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Mason-John Wiley, Paris, 1994.  Google Scholar

[21]

M. O. Korpusov and A. G. Sveshnikov, Three-dimensional nonlinear evolution equations of pseudoparabolic type in problems of mathematical physics, Zh. Vychisl. Mat. Mat. Fiz., 43 (2003), 1835-1869 (in Russian); transl. in: Comput. Math. Math. Phys., 43 (2003), 1765-1797.  Google Scholar

[22]

M. O. Korpusov and A. G. Sveshnikov, Blow-up of solutions of Sobolev-type nonlinear equations with cubic sources, Differ. Uravn., 42 (2006), 404-415 (in Russian); transl. in: Differ. Equ., 42 (2006), 431-443. doi: 10.1134/S001226610603013X.  Google Scholar

[23]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} =-Au+\mathcal{F}(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[24]

Y. Liu and J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[25]

Y. Morimoto, On the hypoellipticity for infinitely degenerate semi-elliptic operators, J. Math. Soc. Jpn., 30 (1978), 327-358.  doi: 10.2969/jmsj/03020327.  Google Scholar

[26]

Y. Morimoto, A criterion for hypoellipticity of second order differential operators, Osaka J. Math., 24 (1987), 651-675.   Google Scholar

[27]

Y. Morimoto, Hypoellipticity for infinitely degenerate elliptic operators, Osaka J. Math., 24 (1987), 13-35.   Google Scholar

[28]

Y. Morimoto and T. Morioka, The positivity of Schrödinger operators and the hypoellipticity of second order degenerate elliptic operators, Bull. Sci. Math., 121 (1997), 507-547.   Google Scholar

[29]

Y. Morimoto and T. Morioka, Hypoellipticity for elliptic operators with infinite degeneracy, Partial Differential Equations and Their Applications (H. Chen and L. Rodino, eds.), World Sci. Publishing, River Edge, NJ, (1999), 240-259.  Google Scholar

[30]

Y. Morimoto and C. Xu, Logarithmic Sobolev inequality and semi-linear Dirichlet problems for infinitely degenerate elliptic operators, Astérisque, 284 (2003), 245-264.   Google Scholar

[31]

V. Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Trans. Amer. Math. Soc., 356 (2004), 2739-2756.  doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[32]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Isr. J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[33]

M. Ptashnyk, Degenerate quasilinear pseudoparabolic equations with memory terms and variational inequalities, Nonlinear Anal., 66 (2007), 2653-2675.  doi: 10.1016/j.na.2006.03.046.  Google Scholar

[34]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[35]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.  doi: 10.1137/0501001.  Google Scholar

[36]

S. L. Sobolev, On a new problem of mathematical physics, Izv. Akad. Nauk SSSR Ser. Math., 18 (1954), 3-50.   Google Scholar

[37]

T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Ration. Mech. Anal., 14 (1963), 1-26.  doi: 10.1007/BF00250690.  Google Scholar

[38]

T. W. Ting, Parabolic and pseudo-parabolic partial differential equations, J. Math. Soc. Japan, 21 (1969), 440-453.  doi: 10.2969/jmsj/02130440.  Google Scholar

[39]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

show all references

References:
[1]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser., 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[2]

G. BarenblatI. Zheltov and I. Kochiva, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.   Google Scholar

[3]

E. D. Benedetto and M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J., 30 (1981), 821-854.  doi: 10.1512/iumj.1981.30.30062.  Google Scholar

[4]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[5]

H. Brill, A semilinear Sobolev evolution equation in a Banach space, J. Differential Equations, 24 (1977), 412-425.  doi: 10.1016/0022-0396(77)90009-2.  Google Scholar

[6]

Y. CaoJ. Yin and C. Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations, 246 (2009), 4568-4590.  doi: 10.1016/j.jde.2009.03.021.  Google Scholar

[7]

H. Chen and K. Li, The existence and regularity of multiple solutions for a class of infinitely degenerate elliptic equations, Math Nach, 282 (2009), 368-385.  doi: 10.1002/mana.200710742.  Google Scholar

[8]

H. ChenP. Luo and G. Liu, Global solution and blow up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[9]

H. ChenP. Luo and S. Tian, Existence and regularity of multiple solutions forinfinitely degenerate nonlinear elliptic equations with singular potential, J. Differ Equ., 257 (2014), 3300-3333.  doi: 10.1016/j.jde.2014.06.014.  Google Scholar

[10]

H. ChenP. Luo and S. Tian, Multiplicity and regularity of solutions for infinitely degenerate elliptic equations with a free perturbation, J. Math. Pures Appl., 103 (2015), 849-867.  doi: 10.1016/j.matpur.2014.09.004.  Google Scholar

[11]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 285 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[12]

M. Christ, Hypoellipticity in the infinitely degenerate regime, Complex Analysis and Geometry (Columbus, OH, 1999), 59-84, Ohio State Univ. Math. Res. Inst. Publ., 9, de Gruyter, Berlin, 2001.  Google Scholar

[13]

C. David and W. Jet, Asymptotic behaviour of the fundamental solution to the equation of heat conduction in two temperatures, J. Math. Anal. Appl., 69 (1979), 411-418.  doi: 10.1016/0022-247X(79)90152-5.  Google Scholar

[14]

V. R. Gopala Rao and T. W. Ting, Solutions of pseudo-heat equations in the whole space, Arch. Ration. Mech. Anal., 49 (1972/73), 57-78.  doi: 10.1007/BF00281474.  Google Scholar

[15]

L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.  doi: 10.1007/BF02392081.  Google Scholar

[16]

S. JiJ. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 261 (2016), 5446-5464.  doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[17]

J. J. Kohn, Hypoellipticity of some degenerate subelliptic operators, J. Funct. Anal., 159 (1998), 203-216.  doi: 10.1006/jfan.1998.3289.  Google Scholar

[18]

J. J. Kohn, Hypoellipticity at points of infinite type, Proceedings of the International Conference on Analysis, Geometry, Number Theory in honor of Leon Ehrenpreis (Philadelphia, 1998), Contemp. Math., 251 (2000), 393-398.  doi: 10.1090/conm/251/03882.  Google Scholar

[19]

M. Koike, A note on hypoellipticity for degenerate elliptic operators, Publ. Res. Inst. Math. Sci., 27 (1991), 995-1000.  doi: 10.2977/prims/1195169008.  Google Scholar

[20]

V. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Mason-John Wiley, Paris, 1994.  Google Scholar

[21]

M. O. Korpusov and A. G. Sveshnikov, Three-dimensional nonlinear evolution equations of pseudoparabolic type in problems of mathematical physics, Zh. Vychisl. Mat. Mat. Fiz., 43 (2003), 1835-1869 (in Russian); transl. in: Comput. Math. Math. Phys., 43 (2003), 1765-1797.  Google Scholar

[22]

M. O. Korpusov and A. G. Sveshnikov, Blow-up of solutions of Sobolev-type nonlinear equations with cubic sources, Differ. Uravn., 42 (2006), 404-415 (in Russian); transl. in: Differ. Equ., 42 (2006), 431-443. doi: 10.1134/S001226610603013X.  Google Scholar

[23]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} =-Au+\mathcal{F}(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[24]

Y. Liu and J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[25]

Y. Morimoto, On the hypoellipticity for infinitely degenerate semi-elliptic operators, J. Math. Soc. Jpn., 30 (1978), 327-358.  doi: 10.2969/jmsj/03020327.  Google Scholar

[26]

Y. Morimoto, A criterion for hypoellipticity of second order differential operators, Osaka J. Math., 24 (1987), 651-675.   Google Scholar

[27]

Y. Morimoto, Hypoellipticity for infinitely degenerate elliptic operators, Osaka J. Math., 24 (1987), 13-35.   Google Scholar

[28]

Y. Morimoto and T. Morioka, The positivity of Schrödinger operators and the hypoellipticity of second order degenerate elliptic operators, Bull. Sci. Math., 121 (1997), 507-547.   Google Scholar

[29]

Y. Morimoto and T. Morioka, Hypoellipticity for elliptic operators with infinite degeneracy, Partial Differential Equations and Their Applications (H. Chen and L. Rodino, eds.), World Sci. Publishing, River Edge, NJ, (1999), 240-259.  Google Scholar

[30]

Y. Morimoto and C. Xu, Logarithmic Sobolev inequality and semi-linear Dirichlet problems for infinitely degenerate elliptic operators, Astérisque, 284 (2003), 245-264.   Google Scholar

[31]

V. Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Trans. Amer. Math. Soc., 356 (2004), 2739-2756.  doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[32]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Isr. J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[33]

M. Ptashnyk, Degenerate quasilinear pseudoparabolic equations with memory terms and variational inequalities, Nonlinear Anal., 66 (2007), 2653-2675.  doi: 10.1016/j.na.2006.03.046.  Google Scholar

[34]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[35]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.  doi: 10.1137/0501001.  Google Scholar

[36]

S. L. Sobolev, On a new problem of mathematical physics, Izv. Akad. Nauk SSSR Ser. Math., 18 (1954), 3-50.   Google Scholar

[37]

T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Ration. Mech. Anal., 14 (1963), 1-26.  doi: 10.1007/BF00250690.  Google Scholar

[38]

T. W. Ting, Parabolic and pseudo-parabolic partial differential equations, J. Math. Soc. Japan, 21 (1969), 440-453.  doi: 10.2969/jmsj/02130440.  Google Scholar

[39]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[10]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[11]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[12]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[13]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[14]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[15]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (265)
  • HTML views (192)
  • Cited by (5)

Other articles
by authors

[Back to Top]