We present some explicit formulas for solutions to nonhomogeneous boundary value problems involving any positive power of the Laplacian in the half-space. For non-integer powers the operator becomes nonlocal and this requires a suitable extension of Dirichlet-type boundary conditions. A key ingredient in our proofs is a point inversion transformation which preserves harmonicity and allows us to use known results for the ball. We include uniqueness statements, regularity estimates, and describe the growth or decay of solutions at infinity and at the boundary.
Citation: |
N. Abatangelo
, Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., 35 (2015)
, 5555-5607.
doi: 10.3934/dcds.2015.35.5555.![]() ![]() ![]() |
|
N. Abatangelo
, S. Jarohs
and A. Saldaña
, Green function and Martin kernel for higher-order fractional Laplacians in balls, Nonlinear Analysis, 175 (2018)
, 173-190.
doi: 10.1016/j.na.2018.05.019.![]() ![]() ![]() |
|
N. Abatangelo
, S. Jarohs
and A. Saldaña
, Positive powers of the Laplacian: From hypersingular integrals to boundary value problems, Comm. Pure Appl. Anal., 17 (2018)
, 899-922.
doi: 10.3934/cpaa.2018045.![]() ![]() ![]() |
|
N. Abatangelo, S. Jarohs and A. Saldaña, Integral representation of solutions to higher-order fractional Dirichlet problems on balls, Comm. Contemp. Math., to appear.
![]() |
|
N. Abatangelo
, S. Jarohs
and A. Saldaña
, On the loss of maximum principles for higher-order fractional Laplacians, Proc. Amer. Math. Soc., 146 (2018)
, 4823-4835.
doi: 10.1090/proc/14165.![]() ![]() ![]() |
|
S. Agmon
, A. Douglis
and L. Nirenberg
, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Comm. Pure Appl. Math., 12 (1959)
, 623-727.
doi: 10.1002/cpa.3160120405.![]() ![]() ![]() |
|
I. Bachar
, H. Mâagli
and M. Zribi
, Estimates on the Green function and existence of positive solutions for some polyharmonic nonlinear equations in the half space, Manuscripta Math., 113 (2004)
, 269-291.
doi: 10.1007/s00229-003-0410-4.![]() ![]() ![]() |
|
K. Bogdan
, Representation of α-harmonic functions in Lipschitz domains, Hiroshima Math. J., 29 (1999)
, 227-243.
![]() ![]() |
|
K. Bogdan
and T. Byczkowski
, Potential theory of Schrödinger operator based on fractional Laplacian, Probab. Math. Statist., 20 (2000)
, 293-335.
![]() ![]() |
|
K. Bogdan
and T. Żak
, On Kelvin transformation, J. Theoret. Probab., 19 (2006)
, 89-120.
doi: 10.1007/s10959-006-0003-8.![]() ![]() ![]() |
|
Z.-Q. Chen
and R. Song
, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312 (1998)
, 465-501.
doi: 10.1007/s002080050232.![]() ![]() ![]() |
|
S. Dipierro
and H.-C. Grunau
, Boggio's formula for fractional polyharmonic Dirichlet problem, Ann. Mat. Pura Appl. (4), 196 (2017)
, 1327-1344.
doi: 10.1007/s10231-016-0618-z.![]() ![]() ![]() |
|
J. Edenhofer
, Eine Integraldarstellung polyharmonischer Funktionen in einem Halbraum, Z. Angew. Math. Mech., 57 (1977)
, T227-T229.
![]() ![]() |
|
A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. Vol. I, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981.
![]() |
|
M. M. Fall
and T. Weth
, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012)
, 2205-2227.
doi: 10.1016/j.jfa.2012.06.018.![]() ![]() ![]() |
|
M. M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half-space, Commun. Contemp. Math., 18 (2016), 1550012, 25pp.
doi: 10.1142/S0219199715500121.![]() ![]() ![]() |
|
F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, volume 1991 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-12245-3.![]() ![]() ![]() |
|
H. W. Gould, Combinatorial Identities, Henry W. Gould, Morgantown, W.Va., 1972.
![]() ![]() |
|
G. Grubb
, Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators, Adv. Math., 268 (2015)
, 478-528.
doi: 10.1016/j.aim.2014.09.018.![]() ![]() ![]() |
|
G. Grubb, Green's formula and Dirichlet-to-Neumann operator for fractional order pseudodifferential operators, Comm. Partial Differential Equations, to appear.
![]() |
|
T. Grzywny, M. Kassmann and L. Leżaj, Remarks on the nonlocal Dirichlet problem, preprint, arXiv: 1807.03676v1.
![]() |
|
N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, Berlin Heidelberg New York, 1972.
![]() ![]() |
|
G. Palatucci
, O. Savin
and E. Valdinoci
, Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl. (4), 192 (2013)
, 673-718.
doi: 10.1007/s10231-011-0243-9.![]() ![]() ![]() |
|
W. Reichel
and T. Weth
, A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems, Math. Z., 261 (2009)
, 805-827.
doi: 10.1007/s00209-008-0352-3.![]() ![]() ![]() |
|
X. Ros-Oton
and J. Serra
, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9), 101 (2014)
, 275-302.
doi: 10.1016/j.matpur.2013.06.003.![]() ![]() ![]() |
|
X. Ros-Oton
and J. Serra
, Local integration by parts and Pohozaev identities for higher order fractional Laplacians, Discrete Contin. Dyn. Syst., 35 (2015)
, 2131-2150.
doi: 10.3934/dcds.2015.35.2131.![]() ![]() ![]() |
|
L. Silvestre
, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007)
, 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
|
Y. H. Zhang
, G. T. Deng
and T. Qian
, Integral representations of a class of harmonic functions in the half space, J. Differential Equations, 260 (2016)
, 923-936.
doi: 10.1016/j.jde.2015.09.032.![]() ![]() ![]() |