In this paper, we consider a fractional equation with indefinite nonlinearities
$(-\vartriangle )^{α/2} u = a(x_1) f(u) $
for $0<α<2$, where $a$ and $f$ are nondecreasing functions. We prove that there is no positive bounded solution. In particular, in the case $a(x_1) = x_1$ and $f(u) = u^p$, this remarkably improves the result in [
Citation: |
B. Barrios
, L. Del Pezzzo
, J. Garcá-Mellán
and A. Quaas
, A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions, Disc. Cont. Dyn. Sys., 37 (2017)
, 5731-5746.
doi: 10.3934/dcds.2017248.![]() ![]() ![]() |
|
H. Berestycki
, I. Capuzzo-Dolcetta
and L. Nirenberg
, Supperlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonl. Anal., 4 (1994)
, 59-78.
doi: 10.12775/TMNA.1994.023.![]() ![]() ![]() |
|
C. Brandle
, E. Colorado
, A. de Pablo
and U. Sanchez
, A concaveconvex elliptic problem involving the fractional Laplacian, Proc Royal Soc. of Edinburgh, 143 (2013)
, 39-71.
doi: 10.1017/S0308210511000175.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. PDE., 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure. Appl. Math, 62 (2009)
, 597-638.
doi: 10.1002/cpa.20274.![]() ![]() ![]() |
|
M. Cai
and L. Ma
, Moving planes for nonlinear fractional Laplacian equation with negative powers, Disc. Cont. Dyn. Sys. - Series A, 38 (2018)
, 4603-4615.
doi: 10.3934/dcds.2018201.![]() ![]() ![]() |
|
W. Chen
, Y. Fang
and R. Yang
, Liouville theorems involving the fractional Laplacian on a half space, Advances in Math., 274 (2015)
, 167-198.
doi: 10.1016/j.aim.2014.12.013.![]() ![]() ![]() |
|
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS book series, vol. 4, 2010.
![]() ![]() |
|
W. Chen
and C. Li
, Maximum principle for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018)
, 735-758.
doi: 10.1016/j.aim.2018.07.016.![]() ![]() ![]() |
|
W. Chen
, C. Li
and Y. Li
, A direct method of moving planes for fractional Laplacian, Advances in Math., 308 (2017)
, 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
|
W. Chen, C. Li and Y. Li, A direct blow-up and rescaling argument on nonlocal elliptic equations, International J. Math., 27 (2016), 1650064, 20 pp.
doi: 10.1142/S0129167X16500646.![]() ![]() ![]() |
|
W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Cal. Var. & PDEs, 56 (2017), Art. 29, 18 pp.
doi: 10.1007/s00526-017-1110-3.![]() ![]() ![]() |
|
W. Chen
, C. Li
and B. Ou
, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006)
, 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
|
W. Chen
, C. Li
and B. Ou
, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Sys., 12 (2005)
, 347-354.
doi: 10.3934/dcds.2005.12.347.![]() ![]() ![]() |
|
W. Chen
and J. Zhu
, Indefinite fractional elliptic problem and Liouville theorems, J. Diff. Equa., 260 (2016)
, 4758-4785.
doi: 10.1016/j.jde.2015.11.029.![]() ![]() ![]() |
|
T. Cheng
, Monotonicity and symmetry of solutions to frac- tional Laplacian equation, Disc. Cont. Dyn. Sys. - Series A, 37 (2017)
, 3587-3599.
doi: 10.3934/dcds.2017154.![]() ![]() ![]() |
|
J. Dou
and Y. Li
, Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space, Disc. Cont. Dyn. Sys. - Series A, 38 (2018)
, 3939-3953.
doi: 10.3934/dcds.2018171.![]() ![]() ![]() |
|
Y. Fang
and W. Chen
, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, dvances in Math., 229 (2012)
, 2835-2867.
doi: 10.1016/j.aim.2012.01.018.![]() ![]() ![]() |
|
B. Gidas
, W. Ni
and L. Nirenberg
, Symmetry and the related properties via the maximum principle, Comm. Math. Phys., 68 (1979)
, 209-243.
doi: 10.1007/BF01221125.![]() ![]() ![]() |
|
X. Han
, G. Lu
and J. Zhu
, Characterization of balls in terms of Bessel-potential integral equation, J. Diff. Equa., 252 (2012)
, 1589-1602.
doi: 10.1016/j.jde.2011.07.037.![]() ![]() ![]() |
|
F. Hang
, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007)
, 373-383.
doi: 10.4310/MRL.2007.v14.n3.a2.![]() ![]() ![]() |
|
F. Hang
, X. Wang
and X. Yan
, An integral equation in conformal geometry, Ann. H. Poincare Nonl. Anal., 26 (2009)
, 1-21.
doi: 10.1016/j.anihpc.2007.03.006.![]() ![]() ![]() |
|
S. Jarohs
and T. Weth
, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Annali di Mat. Pura Appl., 195 (2016)
, 273-291.
doi: 10.1007/s10231-014-0462-y.![]() ![]() ![]() |
|
Y. Lei
, Asymptotic properties of positive solutions of the Hardy Sobolev type equations, J. Diff. Equa., 254 (2013)
, 1774-1799.
doi: 10.1016/j.jde.2012.11.008.![]() ![]() ![]() |
|
Y. Lei
, C. Li
and C. Ma
, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy Littlewood Sobolev system of integral equations, Cal. Var. & PDEs, 45 (2012)
, 43-61.
doi: 10.1007/s00526-011-0450-7.![]() ![]() ![]() |
|
C. Li, Z. Wu and H. Xu, Maximum Principles and Bocher Type Theorems, Proceedings of the National Academy of Sciences, June 20, 2018.
![]() |
|
C. S. Lin
, On Liouville theorem and apriori estimates for the scalar curvature equations, Ann. Scula Norm. Sup. Pisa CI.Sci., 27 (1998)
, 107-130.
![]() ![]() |
|
B. Liu
, Direct method of moving planes for logarithmic Laplacian system in bounded domains, Disc. Cont. Dyn. Sys. - Series A, 38 (2018)
, 5339-5349.
doi: 10.3934/dcds.2018235.![]() ![]() ![]() |
|
G. Lu
and J. Zhu
, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Analysis, 75 (2012)
, 3036-3048.
doi: 10.1016/j.na.2011.11.036.![]() ![]() ![]() |
|
G. Lu
and J. Zhu
, The axial symmetry and regularity of solutions to an integral equation in a half space, Pacific J. Math., 253 (2011)
, 455-473.
doi: 10.2140/pjm.2011.253.455.![]() ![]() ![]() |
|
G. Lu
and J. Zhu
, Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Cal. Var. & PDEs, 42 (2011)
, 563-577.
doi: 10.1007/s00526-011-0398-7.![]() ![]() ![]() |
|
L. Ma
and D. Chen
, A Liouville type theorem for an integral system, Comm. Pure Appl. Anal., 5 (2006)
, 855-859.
doi: 10.3934/cpaa.2006.5.855.![]() ![]() ![]() |
|
L. Ma
and L. Zhao
, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010)
, 455-467.
doi: 10.1007/s00205-008-0208-3.![]() ![]() ![]() |
|
X. Ros-Oton
and J. Serra
, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. de Math. Pures et Appl., 101 (2014)
, 275-302.
doi: 10.1016/j.matpur.2013.06.003.![]() ![]() ![]() |
|
L. Silvestre
, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007)
, 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
|
R. Zhuo
, W. Chen
, X. Cui
and Z. Yuan
, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Disc. Cont. Dyn. Sys., 36 (2016)
, 1125-1141.
doi: 10.3934/dcds.2016.36.1125.![]() ![]() ![]() |