March  2019, 39(3): 1359-1377. doi: 10.3934/dcds.2019058

A Liouville theorem for the subcritical Lane-Emden system

1. 

Department of Mathematics, University of Texas at San Antonio, San Antonio, TX 78249, USA

2. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

* Corresponding author: Genggeng Huang

Received  May 2018 Published  December 2018

Fund Project: The first author is partially supported by NSF DMS-1405175. The second author is partially supported by NSFC-11401376 and the Scholarship of International Postdoctoral Exchange Fellowship Program

The Lane-Emden conjecture says that the subcritical Lane-Emden system admits no positive solution. In this paper, we present a necessary and sufficient condition to the Lane-Emden conjecture. This condition is an energy-type a priori estimate. The necessity of the condition we found can be easily checked. However, a major difficulty lies in the sufficiency. The proof is quite involving, but the benefit is that it reduces the longstanding problem to obtaining the a priori estimate of energy type.

Citation: Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058
References:
[1]

I. Birindelli and E. Mitidieri, Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1217-1247.  doi: 10.1017/S0308210500027293.  Google Scholar

[2]

J. Busca and R. Manasevich, A Liouville-type theorem for Lane-Emden systems, Indiana University Mathematics Journal, 51 (2002), 37-51.   Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Disc. & Cont. Dynamics Sys., 24 (2009), 1167-1184.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[5]

Ph. ClémentD. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Communications in Partial Differential Equations, 17 (1992), 923-940.  doi: 10.1080/03605309208820869.  Google Scholar

[6]

D. De Figueiredo and P. Felmer, A liouville-type theorem for elliptic systems, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 21 (1994), 387-397.   Google Scholar

[7]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Communications on Pure and Applied Mathematics, 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[8]

Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315.  doi: 10.3934/dcds.2016.36.3277.  Google Scholar

[9]

C. Li, A degree theory approach for the shooting method, arXiv preprint, arXiv:1301.6232, 2013. Google Scholar

[10]

C. Li, Z. Wu and H. Xu, Maximum principles and Bocher type theorems, Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.1804225115, 2018. Google Scholar

[11]

J. LiuY. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems, Journal of Partial Differential Equations, 19 (2006), 256-270.   Google Scholar

[12]

E. Mitidieri, A Rellich type identity and applications: Identity and applications, Communications in Partial Differential Equations, 18 (1993), 125-151.  doi: 10.1080/03605309308820923.  Google Scholar

[13]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in RN, Differ. Integral Equations, 9 (1996), 465-479.   Google Scholar

[14]

Q. Phan, Liouville-type theorems and bounds of solutions for hardy-hénon elliptic systems, Advances in Differential Equations, 17 (2012), 605-634.   Google Scholar

[15]

Q. Phan and P. Souplet, Liouville-type theorems and bounds of solutions of hardy-hénon equations, Journal of Differential Equations, 252 (2012), 2544-2562.  doi: 10.1016/j.jde.2011.09.022.  Google Scholar

[16]

P. PolacikP. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part I : Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[17]

P. Quittner and P. Souplet, Optimal Liouville-type theorems for noncooperative elliptic schrödinger systems and applications, Communications in Mathematical Physics, 311 (2012), 1-19.  doi: 10.1007/s00220-012-1440-0.  Google Scholar

[18]

W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, Journal of Differential Equations, 161 (2000), 219-243.  doi: 10.1006/jdeq.1999.3700.  Google Scholar

[19]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equations, 9 (1996), 635-653.   Google Scholar

[20]

J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system, Atti Semi. Mat. Fis. Univ. Modena, 46 (1998), 369-380.   Google Scholar

[21]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Advances in Mathematics, 221 (2009), 1409-1427.  doi: 10.1016/j.aim.2009.02.014.  Google Scholar

[22]

P. Souplet, Liouville-type theorems for elliptic schrödinger systems associated with copositive matrices, Networks & Heterogeneous Media, 7 (2012), 967-988.  doi: 10.3934/nhm.2012.7.967.  Google Scholar

[23]

J. Villavert, A refined approach for non-negative entire solutions of ∆u + up = 0 with subcritical sobolev growth, Adv. Nonlinear Stud., 17 (2017), 691-703.  doi: 10.1515/ans-2016-6024.  Google Scholar

show all references

References:
[1]

I. Birindelli and E. Mitidieri, Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1217-1247.  doi: 10.1017/S0308210500027293.  Google Scholar

[2]

J. Busca and R. Manasevich, A Liouville-type theorem for Lane-Emden systems, Indiana University Mathematics Journal, 51 (2002), 37-51.   Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Disc. & Cont. Dynamics Sys., 24 (2009), 1167-1184.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[5]

Ph. ClémentD. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Communications in Partial Differential Equations, 17 (1992), 923-940.  doi: 10.1080/03605309208820869.  Google Scholar

[6]

D. De Figueiredo and P. Felmer, A liouville-type theorem for elliptic systems, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 21 (1994), 387-397.   Google Scholar

[7]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Communications on Pure and Applied Mathematics, 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[8]

Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315.  doi: 10.3934/dcds.2016.36.3277.  Google Scholar

[9]

C. Li, A degree theory approach for the shooting method, arXiv preprint, arXiv:1301.6232, 2013. Google Scholar

[10]

C. Li, Z. Wu and H. Xu, Maximum principles and Bocher type theorems, Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.1804225115, 2018. Google Scholar

[11]

J. LiuY. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems, Journal of Partial Differential Equations, 19 (2006), 256-270.   Google Scholar

[12]

E. Mitidieri, A Rellich type identity and applications: Identity and applications, Communications in Partial Differential Equations, 18 (1993), 125-151.  doi: 10.1080/03605309308820923.  Google Scholar

[13]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in RN, Differ. Integral Equations, 9 (1996), 465-479.   Google Scholar

[14]

Q. Phan, Liouville-type theorems and bounds of solutions for hardy-hénon elliptic systems, Advances in Differential Equations, 17 (2012), 605-634.   Google Scholar

[15]

Q. Phan and P. Souplet, Liouville-type theorems and bounds of solutions of hardy-hénon equations, Journal of Differential Equations, 252 (2012), 2544-2562.  doi: 10.1016/j.jde.2011.09.022.  Google Scholar

[16]

P. PolacikP. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part I : Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[17]

P. Quittner and P. Souplet, Optimal Liouville-type theorems for noncooperative elliptic schrödinger systems and applications, Communications in Mathematical Physics, 311 (2012), 1-19.  doi: 10.1007/s00220-012-1440-0.  Google Scholar

[18]

W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, Journal of Differential Equations, 161 (2000), 219-243.  doi: 10.1006/jdeq.1999.3700.  Google Scholar

[19]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equations, 9 (1996), 635-653.   Google Scholar

[20]

J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system, Atti Semi. Mat. Fis. Univ. Modena, 46 (1998), 369-380.   Google Scholar

[21]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Advances in Mathematics, 221 (2009), 1409-1427.  doi: 10.1016/j.aim.2009.02.014.  Google Scholar

[22]

P. Souplet, Liouville-type theorems for elliptic schrödinger systems associated with copositive matrices, Networks & Heterogeneous Media, 7 (2012), 967-988.  doi: 10.3934/nhm.2012.7.967.  Google Scholar

[23]

J. Villavert, A refined approach for non-negative entire solutions of ∆u + up = 0 with subcritical sobolev growth, Adv. Nonlinear Stud., 17 (2017), 691-703.  doi: 10.1515/ans-2016-6024.  Google Scholar

[1]

Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167

[2]

Philip Korman, Junping Shi. On lane-emden type systems. Conference Publications, 2005, 2005 (Special) : 510-517. doi: 10.3934/proc.2005.2005.510

[3]

Wenjing Chen, Louis Dupaigne, Marius Ghergu. A new critical curve for the Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2469-2479. doi: 10.3934/dcds.2014.34.2469

[4]

Mostafa Fazly, Nassif Ghoussoub. On the Hénon-Lane-Emden conjecture. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2513-2533. doi: 10.3934/dcds.2014.34.2513

[5]

Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011

[6]

Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094

[7]

Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793

[8]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[9]

Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure & Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807

[10]

Igor Freire, Ben Muatjetjeja. Symmetry analysis of a Lane-Emden-Klein-Gordon-Fock system with central symmetry. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 667-673. doi: 10.3934/dcdss.2018041

[11]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[12]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[13]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[14]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[15]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[16]

Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721

[17]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[18]

Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic & Related Models, 2015, 8 (4) : 617-650. doi: 10.3934/krm.2015.8.617

[19]

Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020148

[20]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (105)
  • HTML views (62)
  • Cited by (0)

Other articles
by authors

[Back to Top]