The Lane-Emden conjecture says that the subcritical Lane-Emden system admits no positive solution. In this paper, we present a necessary and sufficient condition to the Lane-Emden conjecture. This condition is an energy-type a priori estimate. The necessity of the condition we found can be easily checked. However, a major difficulty lies in the sufficiency. The proof is quite involving, but the benefit is that it reduces the longstanding problem to obtaining the a priori estimate of energy type.
Citation: |
I. Birindelli
and E. Mitidieri
, Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998)
, 1217-1247.
doi: 10.1017/S0308210500027293.![]() ![]() ![]() |
|
J. Busca
and R. Manasevich
, A Liouville-type theorem for Lane-Emden systems, Indiana University Mathematics Journal, 51 (2002)
, 37-51.
![]() ![]() |
|
W. Chen
and C. Li
, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991)
, 615-622.
doi: 10.1215/S0012-7094-91-06325-8.![]() ![]() ![]() |
|
W. Chen
and C. Li
, An integral system and the Lane-Emden conjecture, Disc. & Cont. Dynamics Sys., 24 (2009)
, 1167-1184.
doi: 10.3934/dcds.2009.24.1167.![]() ![]() ![]() |
|
Ph. Clément
, D. G. de Figueiredo
and E. Mitidieri
, Positive solutions of semilinear elliptic systems, Communications in Partial Differential Equations, 17 (1992)
, 923-940.
doi: 10.1080/03605309208820869.![]() ![]() ![]() |
|
D. De Figueiredo
and P. Felmer
, A liouville-type theorem for elliptic systems, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 21 (1994)
, 387-397.
![]() ![]() |
|
B. Gidas
and J. Spruck
, Global and local behavior of positive solutions of nonlinear elliptic equations, Communications on Pure and Applied Mathematics, 34 (1981)
, 525-598.
doi: 10.1002/cpa.3160340406.![]() ![]() ![]() |
|
Y. Lei
and C. Li
, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016)
, 3277-3315.
doi: 10.3934/dcds.2016.36.3277.![]() ![]() ![]() |
|
C. Li, A degree theory approach for the shooting method, arXiv preprint, arXiv:1301.6232, 2013.
![]() |
|
C. Li, Z. Wu and H. Xu, Maximum principles and Bocher type theorems, Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.1804225115, 2018.
![]() |
|
J. Liu
, Y. Guo
and Y. Zhang
, Existence of positive entire solutions for polyharmonic equations and systems, Journal of Partial Differential Equations, 19 (2006)
, 256-270.
![]() ![]() |
|
E. Mitidieri
, A Rellich type identity and applications: Identity and applications, Communications in Partial Differential Equations, 18 (1993)
, 125-151.
doi: 10.1080/03605309308820923.![]() ![]() ![]() |
|
E. Mitidieri
, Nonexistence of positive solutions of semilinear elliptic systems in RN, Differ. Integral Equations, 9 (1996)
, 465-479.
![]() ![]() |
|
Q. Phan
, Liouville-type theorems and bounds of solutions for hardy-hénon elliptic systems, Advances in Differential Equations, 17 (2012)
, 605-634.
![]() ![]() |
|
Q. Phan
and P. Souplet
, Liouville-type theorems and bounds of solutions of hardy-hénon equations, Journal of Differential Equations, 252 (2012)
, 2544-2562.
doi: 10.1016/j.jde.2011.09.022.![]() ![]() ![]() |
|
P. Polacik
, P. Quittner
and P. Souplet
, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part I : Elliptic equations and systems, Duke Math. J., 139 (2007)
, 555-579.
doi: 10.1215/S0012-7094-07-13935-8.![]() ![]() ![]() |
|
P. Quittner
and P. Souplet
, Optimal Liouville-type theorems for noncooperative elliptic schrödinger systems and applications, Communications in Mathematical Physics, 311 (2012)
, 1-19.
doi: 10.1007/s00220-012-1440-0.![]() ![]() ![]() |
|
W. Reichel
and H. Zou
, Non-existence results for semilinear cooperative elliptic systems via moving spheres, Journal of Differential Equations, 161 (2000)
, 219-243.
doi: 10.1006/jdeq.1999.3700.![]() ![]() ![]() |
|
J. Serrin
and H. Zou
, Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equations, 9 (1996)
, 635-653.
![]() ![]() |
|
J. Serrin
and H. Zou
, Existence of positive solutions of the Lane-Emden system, Atti Semi. Mat. Fis. Univ. Modena, 46 (1998)
, 369-380.
![]() ![]() |
|
P. Souplet
, The proof of the Lane-Emden conjecture in four space dimensions, Advances in Mathematics, 221 (2009)
, 1409-1427.
doi: 10.1016/j.aim.2009.02.014.![]() ![]() ![]() |
|
P. Souplet
, Liouville-type theorems for elliptic schrödinger systems associated with copositive matrices, Networks & Heterogeneous Media, 7 (2012)
, 967-988.
doi: 10.3934/nhm.2012.7.967.![]() ![]() ![]() |
|
J. Villavert
, A refined approach for non-negative entire solutions of ∆u + up = 0 with subcritical sobolev growth, Adv. Nonlinear Stud., 17 (2017)
, 691-703.
doi: 10.1515/ans-2016-6024.![]() ![]() ![]() |