\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A Liouville theorem for the subcritical Lane-Emden system

  • * Corresponding author: Genggeng Huang

    * Corresponding author: Genggeng Huang

The first author is partially supported by NSF DMS-1405175. The second author is partially supported by NSFC-11401376 and the Scholarship of International Postdoctoral Exchange Fellowship Program

Abstract Full Text(HTML) Related Papers Cited by
  • The Lane-Emden conjecture says that the subcritical Lane-Emden system admits no positive solution. In this paper, we present a necessary and sufficient condition to the Lane-Emden conjecture. This condition is an energy-type a priori estimate. The necessity of the condition we found can be easily checked. However, a major difficulty lies in the sufficiency. The proof is quite involving, but the benefit is that it reduces the longstanding problem to obtaining the a priori estimate of energy type.

    Mathematics Subject Classification: Primary: 35B09, 35B53, 35J05, 35J61.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   I. Birindelli  and  E. Mitidieri , Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998) , 1217-1247.  doi: 10.1017/S0308210500027293.
      J. Busca  and  R. Manasevich , A Liouville-type theorem for Lane-Emden systems, Indiana University Mathematics Journal, 51 (2002) , 37-51. 
      W. Chen  and  C. Li , Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991) , 615-622.  doi: 10.1215/S0012-7094-91-06325-8.
      W. Chen  and  C. Li , An integral system and the Lane-Emden conjecture, Disc. & Cont. Dynamics Sys., 24 (2009) , 1167-1184.  doi: 10.3934/dcds.2009.24.1167.
      Ph. Clément , D. G. de Figueiredo  and  E. Mitidieri , Positive solutions of semilinear elliptic systems, Communications in Partial Differential Equations, 17 (1992) , 923-940.  doi: 10.1080/03605309208820869.
      D. De Figueiredo  and  P. Felmer , A liouville-type theorem for elliptic systems, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 21 (1994) , 387-397. 
      B. Gidas  and  J. Spruck , Global and local behavior of positive solutions of nonlinear elliptic equations, Communications on Pure and Applied Mathematics, 34 (1981) , 525-598.  doi: 10.1002/cpa.3160340406.
      Y. Lei  and  C. Li , Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016) , 3277-3315.  doi: 10.3934/dcds.2016.36.3277.
      C. Li, A degree theory approach for the shooting method, arXiv preprint, arXiv:1301.6232, 2013.
      C. Li, Z. Wu and H. Xu, Maximum principles and Bocher type theorems, Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.1804225115, 2018.
      J. Liu , Y. Guo  and  Y. Zhang , Existence of positive entire solutions for polyharmonic equations and systems, Journal of Partial Differential Equations, 19 (2006) , 256-270. 
      E. Mitidieri , A Rellich type identity and applications: Identity and applications, Communications in Partial Differential Equations, 18 (1993) , 125-151.  doi: 10.1080/03605309308820923.
      E. Mitidieri , Nonexistence of positive solutions of semilinear elliptic systems in RN, Differ. Integral Equations, 9 (1996) , 465-479. 
      Q. Phan , Liouville-type theorems and bounds of solutions for hardy-hénon elliptic systems, Advances in Differential Equations, 17 (2012) , 605-634. 
      Q. Phan  and  P. Souplet , Liouville-type theorems and bounds of solutions of hardy-hénon equations, Journal of Differential Equations, 252 (2012) , 2544-2562.  doi: 10.1016/j.jde.2011.09.022.
      P. Polacik , P. Quittner  and  P. Souplet , Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part I : Elliptic equations and systems, Duke Math. J., 139 (2007) , 555-579.  doi: 10.1215/S0012-7094-07-13935-8.
      P. Quittner  and  P. Souplet , Optimal Liouville-type theorems for noncooperative elliptic schrödinger systems and applications, Communications in Mathematical Physics, 311 (2012) , 1-19.  doi: 10.1007/s00220-012-1440-0.
      W. Reichel  and  H. Zou , Non-existence results for semilinear cooperative elliptic systems via moving spheres, Journal of Differential Equations, 161 (2000) , 219-243.  doi: 10.1006/jdeq.1999.3700.
      J. Serrin  and  H. Zou , Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equations, 9 (1996) , 635-653. 
      J. Serrin  and  H. Zou , Existence of positive solutions of the Lane-Emden system, Atti Semi. Mat. Fis. Univ. Modena, 46 (1998) , 369-380. 
      P. Souplet , The proof of the Lane-Emden conjecture in four space dimensions, Advances in Mathematics, 221 (2009) , 1409-1427.  doi: 10.1016/j.aim.2009.02.014.
      P. Souplet , Liouville-type theorems for elliptic schrödinger systems associated with copositive matrices, Networks & Heterogeneous Media, 7 (2012) , 967-988.  doi: 10.3934/nhm.2012.7.967.
      J. Villavert , A refined approach for non-negative entire solutions of ∆u + up = 0 with subcritical sobolev growth, Adv. Nonlinear Stud., 17 (2017) , 691-703.  doi: 10.1515/ans-2016-6024.
  • 加载中
SHARE

Article Metrics

HTML views(827) PDF downloads(389) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return