March  2019, 39(3): 1517-1531. doi: 10.3934/dcds.2019065

A priori bounds and existence result of positive solutions for fractional Laplacian systems

School of Applied Mathematics, Xiamen University of Technology, 600 Ligong Road, Xiamen 361024, China

* Corresponding author: Lishan Lin

Received  December 2017 Published  December 2018

Fund Project: The author is supported by High-level Talent Project of Xiamen University of Technology grant YKJ14028R.

In this paper, we consider the fractional Laplacian system
$\left\{\begin{array}{ll}(-\triangle)^{\frac{\alpha}{2}}u+\sum^{N}_{i = 1}b_{i}(x)\frac{\partial u}{\partial x_{i}}+C(x)u = f(x,v), \;\;x\in \Omega,\\(-\triangle)^{\frac{\beta}{2}}v+\sum^{N}_{i = 1}c_{i}(x)\frac{\partial v}{\partial x_{i}}+D(x)v = g(x,u),\;\; x\in \Omega,\\u>0, v>0, \;\; x\in \Omega,\\u = 0, v = 0, \;\; x\in \mathbb R^{N}\setminus \Omega,\end{array}\right.$
where
$Ω$
is a smooth bounded domain in
$\mathbb R^{N}$
,
$α ∈ (1,2)$
,
$β ∈ (1,2)$
,
$N>\max\{α, β\}$
. Under some suitable conditions on potential functions and nonlinear terms, we use scaling method to obtain a priori bounds of positive solutions for the fractional Laplacian system with distinct fractional Laplacians.
Citation: Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065
References:
[1]

W. AoJ. Wei and W. Yang, Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials, Discrete Contin. Dyn. Syst. Series A, 37 (2017), 5561-5601.  doi: 10.3934/dcds.2017242.  Google Scholar

[2]

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. Google Scholar

[3]

B. BarriosI. De BonisM. Medina and I. Peral, Semilinear problems for the fractional Laplacian with a singular nonlinearity, Open Math., 13 (2015), 390-407.  doi: 10.1515/math-2015-0038.  Google Scholar

[4]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.  doi: 10.1016/j.anihpc.2014.04.003.  Google Scholar

[5]

B. Barrios, L. Del Pezzo, J. García-Melián and A. Quaas, A priori bounds and existence of solutions for some nonlocal elliptic problems, arXiv:1506.04289, 2015. Google Scholar

[6]

J. P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Physics Reports, 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.  doi: 10.1007/s00205-010-0336-4.  Google Scholar

[8]

K. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. Google Scholar

[9]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[10]

W. ChenC. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math.(27), 308 (2016), 1650064, 20 pp.  doi: 10.1142/S0129167X16500646.  Google Scholar

[11]

W. Chen, C. Li and P. Ma, The Fractional Laplacian, accepted for publication in World Scientific Publish Company. Google Scholar

[12]

Y. Chen and J. Su, Resonant problems for fractional Laplacian, Commun. Pure Appl. Anal., 16 (2017), 163-187.  doi: 10.3934/cpaa.2017008.  Google Scholar

[13]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507, 7 pp.  doi: 10.1063/1.3701574.  Google Scholar

[14]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Financial Mathematics Series, Boca Raton, Chapman Hall/CRC, FL, 2004. Google Scholar

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

W. DongJ. Xu and Z. Wei, Infinitely many weak solutions for a fractional Schrödinger equation, Boundary Value Prob., 53 (2014), 14 pp.  doi: 10.1186/s13661-014-0159-6.  Google Scholar

[17]

P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schr¨odinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh, Sect. A, 142 (2012), 1237-1262 doi: 10.1017/S0308210511000746.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 1983. Google Scholar

[19]

Y. Gou and J. Nie, Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator, Discrete Contin. Dyn. Syst. Series A, 36 (2016), 6873-6898.  doi: 10.3934/dcds.2016099.  Google Scholar

[20]

T. Gou and H. Sun, Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition, Appl. Math. Comput., 257 (2015), 409-416.  doi: 10.1016/j.amc.2014.09.035.  Google Scholar

[21]

D. Kriventsov, C1, α interior regularity for nonlinear nonlocal elliptic equations with rough kernels, Comm. Partial Differential Equations, 38 (2013), 2081-2106.  doi: 10.1080/03605302.2013.831990.  Google Scholar

[22]

E. Leite and M. Montenegro, On positive viscosity solutions of fractional Lane-Emden systems, arXiv:1509.01267, 2015. Google Scholar

[23]

E. Leite and M. Montenegro, A priori bounds and positive solutions for non-variational fractional elliptic systems, Differential Integral Equations, 30 (2017), 947-974.   Google Scholar

[24]

D. Li and Z. Li, A radial symmetry and Liouville theorem for systems involving fractional Laplacian, Front. Math. China, 12 (2017), 389-402.  doi: 10.1007/s11464-016-0517-z.  Google Scholar

[25]

Y. Li and P. Ma, Symmetry of solutions for a fractional system, Sci. China Math., 60 (2017), 1805-1824.  doi: 10.1007/s11425-016-0231-x.  Google Scholar

[26]

W. LongS. Peng and J. Yang, Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations, Discrete Contin. Dyn. Syst. Series A, 36 (2016), 917-939.  doi: 10.3934/dcds.2016.36.917.  Google Scholar

[27]

P. PoláčikP. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[28]

A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differential Equations, 52 (2015), 641-659.  doi: 10.1007/s00526-014-0727-8.  Google Scholar

[29]

A. Quaas and A. Xia, A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian, Nonlinearity, 29 (2016), 2279-2297.  doi: 10.1088/0951-7715/29/8/2279.  Google Scholar

[30]

A. Quaas and A. Xia, Existence results of positive solutions for nonlinear cooperative elliptic systems involving fractional Laplacian, Commun. Contemp. Math., 20 (2018), 1750032, 22 pp.  doi: 10.1142/S0219199717500328.  Google Scholar

[31]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[32]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[33]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[34]

K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $\mathbb{R}^{N}$, Nonlinear Anal. Real World Appl., 21 (2015), 76-86.  doi: 10.1016/j.nonrwa.2014.06.008.  Google Scholar

[35]

Y. Wei and X. Su, On a class of non-local elliptic equations with asymptotically linear term, Discrete Contin. Dyn. Syst., 38 (2018), 6287-6304.  doi: 10.3934/dcds.2018154.  Google Scholar

[36]

L. ZhangC. LiW. Chen and T. Cheng, A Liouville theorem for $α$-harmonic functions in $\Bbb R^n_+$, Discrete Contin. Dyn. Syst., 36 (2016), 1721-1736.  doi: 10.3934/dcds.2016.36.1721.  Google Scholar

show all references

References:
[1]

W. AoJ. Wei and W. Yang, Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials, Discrete Contin. Dyn. Syst. Series A, 37 (2017), 5561-5601.  doi: 10.3934/dcds.2017242.  Google Scholar

[2]

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. Google Scholar

[3]

B. BarriosI. De BonisM. Medina and I. Peral, Semilinear problems for the fractional Laplacian with a singular nonlinearity, Open Math., 13 (2015), 390-407.  doi: 10.1515/math-2015-0038.  Google Scholar

[4]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.  doi: 10.1016/j.anihpc.2014.04.003.  Google Scholar

[5]

B. Barrios, L. Del Pezzo, J. García-Melián and A. Quaas, A priori bounds and existence of solutions for some nonlocal elliptic problems, arXiv:1506.04289, 2015. Google Scholar

[6]

J. P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Physics Reports, 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.  doi: 10.1007/s00205-010-0336-4.  Google Scholar

[8]

K. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. Google Scholar

[9]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[10]

W. ChenC. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math.(27), 308 (2016), 1650064, 20 pp.  doi: 10.1142/S0129167X16500646.  Google Scholar

[11]

W. Chen, C. Li and P. Ma, The Fractional Laplacian, accepted for publication in World Scientific Publish Company. Google Scholar

[12]

Y. Chen and J. Su, Resonant problems for fractional Laplacian, Commun. Pure Appl. Anal., 16 (2017), 163-187.  doi: 10.3934/cpaa.2017008.  Google Scholar

[13]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507, 7 pp.  doi: 10.1063/1.3701574.  Google Scholar

[14]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Financial Mathematics Series, Boca Raton, Chapman Hall/CRC, FL, 2004. Google Scholar

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

W. DongJ. Xu and Z. Wei, Infinitely many weak solutions for a fractional Schrödinger equation, Boundary Value Prob., 53 (2014), 14 pp.  doi: 10.1186/s13661-014-0159-6.  Google Scholar

[17]

P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schr¨odinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh, Sect. A, 142 (2012), 1237-1262 doi: 10.1017/S0308210511000746.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 1983. Google Scholar

[19]

Y. Gou and J. Nie, Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator, Discrete Contin. Dyn. Syst. Series A, 36 (2016), 6873-6898.  doi: 10.3934/dcds.2016099.  Google Scholar

[20]

T. Gou and H. Sun, Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition, Appl. Math. Comput., 257 (2015), 409-416.  doi: 10.1016/j.amc.2014.09.035.  Google Scholar

[21]

D. Kriventsov, C1, α interior regularity for nonlinear nonlocal elliptic equations with rough kernels, Comm. Partial Differential Equations, 38 (2013), 2081-2106.  doi: 10.1080/03605302.2013.831990.  Google Scholar

[22]

E. Leite and M. Montenegro, On positive viscosity solutions of fractional Lane-Emden systems, arXiv:1509.01267, 2015. Google Scholar

[23]

E. Leite and M. Montenegro, A priori bounds and positive solutions for non-variational fractional elliptic systems, Differential Integral Equations, 30 (2017), 947-974.   Google Scholar

[24]

D. Li and Z. Li, A radial symmetry and Liouville theorem for systems involving fractional Laplacian, Front. Math. China, 12 (2017), 389-402.  doi: 10.1007/s11464-016-0517-z.  Google Scholar

[25]

Y. Li and P. Ma, Symmetry of solutions for a fractional system, Sci. China Math., 60 (2017), 1805-1824.  doi: 10.1007/s11425-016-0231-x.  Google Scholar

[26]

W. LongS. Peng and J. Yang, Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations, Discrete Contin. Dyn. Syst. Series A, 36 (2016), 917-939.  doi: 10.3934/dcds.2016.36.917.  Google Scholar

[27]

P. PoláčikP. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[28]

A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differential Equations, 52 (2015), 641-659.  doi: 10.1007/s00526-014-0727-8.  Google Scholar

[29]

A. Quaas and A. Xia, A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian, Nonlinearity, 29 (2016), 2279-2297.  doi: 10.1088/0951-7715/29/8/2279.  Google Scholar

[30]

A. Quaas and A. Xia, Existence results of positive solutions for nonlinear cooperative elliptic systems involving fractional Laplacian, Commun. Contemp. Math., 20 (2018), 1750032, 22 pp.  doi: 10.1142/S0219199717500328.  Google Scholar

[31]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[32]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[33]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[34]

K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $\mathbb{R}^{N}$, Nonlinear Anal. Real World Appl., 21 (2015), 76-86.  doi: 10.1016/j.nonrwa.2014.06.008.  Google Scholar

[35]

Y. Wei and X. Su, On a class of non-local elliptic equations with asymptotically linear term, Discrete Contin. Dyn. Syst., 38 (2018), 6287-6304.  doi: 10.3934/dcds.2018154.  Google Scholar

[36]

L. ZhangC. LiW. Chen and T. Cheng, A Liouville theorem for $α$-harmonic functions in $\Bbb R^n_+$, Discrete Contin. Dyn. Syst., 36 (2016), 1721-1736.  doi: 10.3934/dcds.2016.36.1721.  Google Scholar

[1]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[2]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[3]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[4]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[5]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[6]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[9]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[10]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[13]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[14]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[15]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[16]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[17]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[18]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[19]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[20]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (160)
  • HTML views (102)
  • Cited by (1)

Other articles
by authors

[Back to Top]