March  2019, 39(3): 1517-1531. doi: 10.3934/dcds.2019065

A priori bounds and existence result of positive solutions for fractional Laplacian systems

School of Applied Mathematics, Xiamen University of Technology, 600 Ligong Road, Xiamen 361024, China

* Corresponding author: Lishan Lin

Received  December 2017 Published  December 2018

Fund Project: The author is supported by High-level Talent Project of Xiamen University of Technology grant YKJ14028R

In this paper, we consider the fractional Laplacian system
$\left\{\begin{array}{ll}(-\triangle)^{\frac{\alpha}{2}}u+\sum^{N}_{i = 1}b_{i}(x)\frac{\partial u}{\partial x_{i}}+C(x)u = f(x,v), \;\;x\in \Omega,\\(-\triangle)^{\frac{\beta}{2}}v+\sum^{N}_{i = 1}c_{i}(x)\frac{\partial v}{\partial x_{i}}+D(x)v = g(x,u),\;\; x\in \Omega,\\u>0, v>0, \;\; x\in \Omega,\\u = 0, v = 0, \;\; x\in \mathbb R^{N}\setminus \Omega,\end{array}\right.$
where
$Ω$
is a smooth bounded domain in
$\mathbb R^{N}$
,
$α ∈ (1,2)$
,
$β ∈ (1,2)$
,
$N>\max\{α, β\}$
. Under some suitable conditions on potential functions and nonlinear terms, we use scaling method to obtain a priori bounds of positive solutions for the fractional Laplacian system with distinct fractional Laplacians.
Citation: Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065
References:
[1]

W. AoJ. Wei and W. Yang, Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials, Discrete Contin. Dyn. Syst. Series A, 37 (2017), 5561-5601.  doi: 10.3934/dcds.2017242.  Google Scholar

[2]

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. Google Scholar

[3]

B. BarriosI. De BonisM. Medina and I. Peral, Semilinear problems for the fractional Laplacian with a singular nonlinearity, Open Math., 13 (2015), 390-407.  doi: 10.1515/math-2015-0038.  Google Scholar

[4]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.  doi: 10.1016/j.anihpc.2014.04.003.  Google Scholar

[5]

B. Barrios, L. Del Pezzo, J. García-Melián and A. Quaas, A priori bounds and existence of solutions for some nonlocal elliptic problems, arXiv:1506.04289, 2015. Google Scholar

[6]

J. P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Physics Reports, 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.  doi: 10.1007/s00205-010-0336-4.  Google Scholar

[8]

K. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. Google Scholar

[9]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[10]

W. ChenC. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math.(27), 308 (2016), 1650064, 20 pp.  doi: 10.1142/S0129167X16500646.  Google Scholar

[11]

W. Chen, C. Li and P. Ma, The Fractional Laplacian, accepted for publication in World Scientific Publish Company. Google Scholar

[12]

Y. Chen and J. Su, Resonant problems for fractional Laplacian, Commun. Pure Appl. Anal., 16 (2017), 163-187.  doi: 10.3934/cpaa.2017008.  Google Scholar

[13]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507, 7 pp.  doi: 10.1063/1.3701574.  Google Scholar

[14]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Financial Mathematics Series, Boca Raton, Chapman Hall/CRC, FL, 2004. Google Scholar

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

W. DongJ. Xu and Z. Wei, Infinitely many weak solutions for a fractional Schrödinger equation, Boundary Value Prob., 53 (2014), 14 pp.  doi: 10.1186/s13661-014-0159-6.  Google Scholar

[17]

P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schr¨odinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh, Sect. A, 142 (2012), 1237-1262 doi: 10.1017/S0308210511000746.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 1983. Google Scholar

[19]

Y. Gou and J. Nie, Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator, Discrete Contin. Dyn. Syst. Series A, 36 (2016), 6873-6898.  doi: 10.3934/dcds.2016099.  Google Scholar

[20]

T. Gou and H. Sun, Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition, Appl. Math. Comput., 257 (2015), 409-416.  doi: 10.1016/j.amc.2014.09.035.  Google Scholar

[21]

D. Kriventsov, C1, α interior regularity for nonlinear nonlocal elliptic equations with rough kernels, Comm. Partial Differential Equations, 38 (2013), 2081-2106.  doi: 10.1080/03605302.2013.831990.  Google Scholar

[22]

E. Leite and M. Montenegro, On positive viscosity solutions of fractional Lane-Emden systems, arXiv:1509.01267, 2015. Google Scholar

[23]

E. Leite and M. Montenegro, A priori bounds and positive solutions for non-variational fractional elliptic systems, Differential Integral Equations, 30 (2017), 947-974.   Google Scholar

[24]

D. Li and Z. Li, A radial symmetry and Liouville theorem for systems involving fractional Laplacian, Front. Math. China, 12 (2017), 389-402.  doi: 10.1007/s11464-016-0517-z.  Google Scholar

[25]

Y. Li and P. Ma, Symmetry of solutions for a fractional system, Sci. China Math., 60 (2017), 1805-1824.  doi: 10.1007/s11425-016-0231-x.  Google Scholar

[26]

W. LongS. Peng and J. Yang, Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations, Discrete Contin. Dyn. Syst. Series A, 36 (2016), 917-939.  doi: 10.3934/dcds.2016.36.917.  Google Scholar

[27]

P. PoláčikP. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[28]

A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differential Equations, 52 (2015), 641-659.  doi: 10.1007/s00526-014-0727-8.  Google Scholar

[29]

A. Quaas and A. Xia, A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian, Nonlinearity, 29 (2016), 2279-2297.  doi: 10.1088/0951-7715/29/8/2279.  Google Scholar

[30]

A. Quaas and A. Xia, Existence results of positive solutions for nonlinear cooperative elliptic systems involving fractional Laplacian, Commun. Contemp. Math., 20 (2018), 1750032, 22 pp.  doi: 10.1142/S0219199717500328.  Google Scholar

[31]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[32]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[33]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[34]

K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $\mathbb{R}^{N}$, Nonlinear Anal. Real World Appl., 21 (2015), 76-86.  doi: 10.1016/j.nonrwa.2014.06.008.  Google Scholar

[35]

Y. Wei and X. Su, On a class of non-local elliptic equations with asymptotically linear term, Discrete Contin. Dyn. Syst., 38 (2018), 6287-6304.  doi: 10.3934/dcds.2018154.  Google Scholar

[36]

L. ZhangC. LiW. Chen and T. Cheng, A Liouville theorem for $α$-harmonic functions in $\Bbb R^n_+$, Discrete Contin. Dyn. Syst., 36 (2016), 1721-1736.  doi: 10.3934/dcds.2016.36.1721.  Google Scholar

show all references

References:
[1]

W. AoJ. Wei and W. Yang, Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials, Discrete Contin. Dyn. Syst. Series A, 37 (2017), 5561-5601.  doi: 10.3934/dcds.2017242.  Google Scholar

[2]

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. Google Scholar

[3]

B. BarriosI. De BonisM. Medina and I. Peral, Semilinear problems for the fractional Laplacian with a singular nonlinearity, Open Math., 13 (2015), 390-407.  doi: 10.1515/math-2015-0038.  Google Scholar

[4]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.  doi: 10.1016/j.anihpc.2014.04.003.  Google Scholar

[5]

B. Barrios, L. Del Pezzo, J. García-Melián and A. Quaas, A priori bounds and existence of solutions for some nonlocal elliptic problems, arXiv:1506.04289, 2015. Google Scholar

[6]

J. P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Physics Reports, 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.  doi: 10.1007/s00205-010-0336-4.  Google Scholar

[8]

K. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. Google Scholar

[9]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[10]

W. ChenC. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math.(27), 308 (2016), 1650064, 20 pp.  doi: 10.1142/S0129167X16500646.  Google Scholar

[11]

W. Chen, C. Li and P. Ma, The Fractional Laplacian, accepted for publication in World Scientific Publish Company. Google Scholar

[12]

Y. Chen and J. Su, Resonant problems for fractional Laplacian, Commun. Pure Appl. Anal., 16 (2017), 163-187.  doi: 10.3934/cpaa.2017008.  Google Scholar

[13]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507, 7 pp.  doi: 10.1063/1.3701574.  Google Scholar

[14]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Financial Mathematics Series, Boca Raton, Chapman Hall/CRC, FL, 2004. Google Scholar

[15]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

W. DongJ. Xu and Z. Wei, Infinitely many weak solutions for a fractional Schrödinger equation, Boundary Value Prob., 53 (2014), 14 pp.  doi: 10.1186/s13661-014-0159-6.  Google Scholar

[17]

P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schr¨odinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh, Sect. A, 142 (2012), 1237-1262 doi: 10.1017/S0308210511000746.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 1983. Google Scholar

[19]

Y. Gou and J. Nie, Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator, Discrete Contin. Dyn. Syst. Series A, 36 (2016), 6873-6898.  doi: 10.3934/dcds.2016099.  Google Scholar

[20]

T. Gou and H. Sun, Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition, Appl. Math. Comput., 257 (2015), 409-416.  doi: 10.1016/j.amc.2014.09.035.  Google Scholar

[21]

D. Kriventsov, C1, α interior regularity for nonlinear nonlocal elliptic equations with rough kernels, Comm. Partial Differential Equations, 38 (2013), 2081-2106.  doi: 10.1080/03605302.2013.831990.  Google Scholar

[22]

E. Leite and M. Montenegro, On positive viscosity solutions of fractional Lane-Emden systems, arXiv:1509.01267, 2015. Google Scholar

[23]

E. Leite and M. Montenegro, A priori bounds and positive solutions for non-variational fractional elliptic systems, Differential Integral Equations, 30 (2017), 947-974.   Google Scholar

[24]

D. Li and Z. Li, A radial symmetry and Liouville theorem for systems involving fractional Laplacian, Front. Math. China, 12 (2017), 389-402.  doi: 10.1007/s11464-016-0517-z.  Google Scholar

[25]

Y. Li and P. Ma, Symmetry of solutions for a fractional system, Sci. China Math., 60 (2017), 1805-1824.  doi: 10.1007/s11425-016-0231-x.  Google Scholar

[26]

W. LongS. Peng and J. Yang, Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations, Discrete Contin. Dyn. Syst. Series A, 36 (2016), 917-939.  doi: 10.3934/dcds.2016.36.917.  Google Scholar

[27]

P. PoláčikP. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[28]

A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differential Equations, 52 (2015), 641-659.  doi: 10.1007/s00526-014-0727-8.  Google Scholar

[29]

A. Quaas and A. Xia, A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian, Nonlinearity, 29 (2016), 2279-2297.  doi: 10.1088/0951-7715/29/8/2279.  Google Scholar

[30]

A. Quaas and A. Xia, Existence results of positive solutions for nonlinear cooperative elliptic systems involving fractional Laplacian, Commun. Contemp. Math., 20 (2018), 1750032, 22 pp.  doi: 10.1142/S0219199717500328.  Google Scholar

[31]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[32]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[33]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[34]

K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $\mathbb{R}^{N}$, Nonlinear Anal. Real World Appl., 21 (2015), 76-86.  doi: 10.1016/j.nonrwa.2014.06.008.  Google Scholar

[35]

Y. Wei and X. Su, On a class of non-local elliptic equations with asymptotically linear term, Discrete Contin. Dyn. Syst., 38 (2018), 6287-6304.  doi: 10.3934/dcds.2018154.  Google Scholar

[36]

L. ZhangC. LiW. Chen and T. Cheng, A Liouville theorem for $α$-harmonic functions in $\Bbb R^n_+$, Discrete Contin. Dyn. Syst., 36 (2016), 1721-1736.  doi: 10.3934/dcds.2016.36.1721.  Google Scholar

[1]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[2]

Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125

[3]

Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113

[4]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[5]

Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1905-1927. doi: 10.3934/dcdss.2019125

[6]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[7]

Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941

[8]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[9]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[10]

Dengfeng Lü, Shuangjie Peng. On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3327-3352. doi: 10.3934/dcds.2017141

[11]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[12]

Rongrong Yang, Zhongxue Lü. The properties of positive solutions to semilinear equations involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1073-1089. doi: 10.3934/cpaa.2019052

[13]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[14]

Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193

[15]

Leonelo Iturriaga, Eugenio Massa. Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3831-3850. doi: 10.3934/dcds.2018166

[16]

Jacques Giacomoni, Tuhina Mukherjee, Konijeti Sreenadh. Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 311-337. doi: 10.3934/dcdss.2019022

[17]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[18]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[19]

Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947

[20]

Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (88)
  • HTML views (55)
  • Cited by (0)

Other articles
by authors

[Back to Top]