In this paper, we investigate the following fractional elliptic system
$\left\{ \begin{array}{*{35}{l}} {{(-\Delta )}^{\alpha /2}}u(x) = f(x){{v}^{q}}(x),&x\in {{R}^{n}}, \\ {{(-\Delta )}^{\beta /2}}v(x) = h(x){{u}^{p}}(x),&x\in {{R}^{n}}, \\\end{array} \right.$
where $1≤p, q < ∞$, $0 < α, β < 2$, $f(x)$ and $h(x)$ satisfy suitable conditions. Applying the method of moving planes, we prove monotonicity without any decay assumption at infinity. Furthermore, if $ α = β$, a Liouville theorem is established.
Citation: |
W. Ao
, J. Wei
and W. Yang
, Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials, Discrete Contin. Dyn. Syst., 37 (2017)
, 5561-5601.
doi: 10.3934/dcds.2017242.![]() ![]() ![]() |
|
F. Atkinson
and L. A. Peletier
, Elliptic equations with nearly critical growth, J. Differential Equations, 70 (1987)
, 349-365.
doi: 10.1016/0022-0396(87)90156-2.![]() ![]() ![]() |
|
J. Bertoin,
Lévy Processes, Cambridge Tracts in Mathmatics, 121 Cambridge University Press, Cambridge, 1996.
![]() ![]() |
|
C. Brandle
, E. Colorado
, A. de Pablo
and U. Sanchez
, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Royal Soc. of Edinburgh, 143 (2013)
, 39-71.
doi: 10.1017/S0308210511000175.![]() ![]() ![]() |
|
X. Cabré
and J. Tan
, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010)
, 2052-2093.
doi: 10.1016/j.aim.2010.01.025.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
L. Caffarelli
and L. Vasseur
, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171 (2010)
, 1903-1930.
doi: 10.4007/annals.2010.171.1903.![]() ![]() ![]() |
|
W. Chen
and C. Li
, Super polyharmonic property of solutions for PDE systems and its
applications, Comm. Pure Appl. Anal., 12 (2011)
, 2497-2514.
doi: 10.3934/cpaa.2013.12.2497.![]() ![]() ![]() |
|
W. Chen
and C. Li
, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018)
, 735-758.
doi: 10.1016/j.aim.2018.07.016.![]() ![]() ![]() |
|
W. Chen
, C. Li
and Y. Li
, A drirect method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017)
, 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
|
W. Chen, Y. Li and P. Ma, The fractional Laplacian, in press.
![]() |
|
W. Chen
, C. Li
and B. Ou
, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006)
, 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
|
W. Chen, C. Li and J. Zhu, Fractional equations with indefinite nonlinearities, accepted by Discrete Contin. Dyn. Syst.
![]() |
|
T. Cheng
, Monotonicity and symmetry of solutions to frac- tional Laplacian equation, Discrete Contin. Dyn. Syst., 37 (2017)
, 3587-3599.
doi: 10.3934/dcds.2017154.![]() ![]() ![]() |
|
C. Coffman
, Uniqueness of the ground state solution for $\Delta u-u+u^3$ and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46 (1972)
, 81-95.
doi: 10.1007/BF00250684.![]() ![]() ![]() |
|
P. Constantin
, Euler equations, Navier-Stokes equations and turbulence, in Mathematical foundation of turbulent viscous flows, Lecture Notes in Math., 1871 (2004)
, 1-43.
doi: 10.1007/11545989_1.![]() ![]() ![]() |
|
Z. Dai, L. Cao and P. Wang, Liouville type theorems for the system of fractional nonlinear equations in $R^n_+$,
J. Inequal. Appl., (2016), Paper No. 267, 17 pp.
doi: 10.1186/s13660-016-1207-9.![]() ![]() ![]() |
|
J. Dou
and Y. Li
, Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space, Discrete Contin. Dyn. Syst., 38 (2018)
, 3939-3953.
doi: 10.3934/dcds.2018171.![]() ![]() ![]() |
|
D. Figueiredo
, P. Lions
and R. Nussbaum
, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl., 61 (1982)
, 41-63.
![]() ![]() |
|
B. Gidas
and J. Spruck
, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981)
, 883-901.
doi: 10.1080/03605308108820196.![]() ![]() ![]() |
|
H. Kaper
and M. Kwong
, Uniqueness of non-negative solutions of a class of semilinear elliptic equations, Nonlinear Diffusion Equations and Their Equilibrium States Ⅱ, 13 (1988)
, 1-17.
doi: 10.1007/978-1-4613-9608-6_1.![]() ![]() ![]() |
|
E. Leite ang M. Montenegro, On positive viscosity solutions of fractional Lane-Emden systems, 2015, arXiv:1509.01267.
![]() |
|
Y. Li
and P. Ma
, Symmetry of solutions for a fractional system, Sci. China Math., 60 (2017)
, 1805-1824.
doi: 10.1007/s11425-016-0231-x.![]() ![]() ![]() |
|
K. Mcleod
and J. Serrin
, Uniqueness of positive radial solutions of $\Delta u+f(u) = 0$ in $ {R}^n$, Arch. Rational Mech. Anal., 99 (1987)
, 115-145.
doi: 10.1007/BF00275874.![]() ![]() ![]() |
|
E. D. Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2011)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
P. Niu
, L. Wu
and X. Ji
, Positive solutions to nonlinear systems involving fully nonlinear
fractional operators, Fract. Calc. Appl. Anal., 21 (2018)
, 552-574.
doi: 10.1515/fca-2018-0030.![]() ![]() ![]() |
|
P. Pucci
and V. Radulescu
, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey, Boll. Unione Mat. Ital., 3 (2010)
, 543-584.
![]() ![]() |
|
A. Quaas
and A. Xia
, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differential Equations, 52 (2015)
, 641-659.
doi: 10.1007/s00526-014-0727-8.![]() ![]() ![]() |
|
J. Serrin
and H. Zou
, Non-existence of positive solutions of Lane-Emden systems, Differential Integral Equations, 9 (1996)
, 635-653.
![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Weak and viscosity solutions of the fractional Laplace equation, Publicacions Matematiques, 58 (2014)
, 133-154.
doi: 10.5565/PUBLMAT_58114_06.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013)
, 2445-2464.
doi: 10.3934/cpaa.2013.12.2445.![]() ![]() ![]() |
|
L. Silvestre
, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007)
, 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
|
V. Tarasov
, G. Zaslavsky
and M. George
, Fractional dynamics of systems with long-range interaction, Commun. Nonlinear Sci. Numer. Simul., 11 (2006)
, 885-898.
doi: 10.1016/j.cnsns.2006.03.005.![]() ![]() ![]() |
|
P. Wang
and P. Niu
, A direct method of moving planes for a fully nonlinear nonlocal system, Commun. Pure Appl. Anal., 16 (2017)
, 1707-1718.
doi: 10.3934/cpaa.2017082.![]() ![]() ![]() |
|
L. Wu and P. Niu, Symmetry and Nonexistence of Positive Solutions to Fractional p-Laplacian Equations, to appeared in Discrete Contin. Dyn. Syst., 2018.
![]() |
|
R. Zhuo
, W. Chen
, X. Cui
and Z. Yuan
, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016)
, 1125-1141.
doi: 10.3934/dcds.2016.36.1125.![]() ![]() ![]() |