We consider the systems of fractional Laplacian equations in a domain(bounded or unbounded) in $\mathbb{R}^n$. By using a direct method of moving planes, we show that $u_i(x)$ ($i = 1,2,···,m$) are radial symmetric about the same point and strictly decreasing in the radial direction with respect to this point. Comparing with Zhuo-Chen-Cui-Yuan [
Citation: |
A. D. Aleksandrov
, Uniqueness theorems for surfaces in the large, Amer. Math. Soc. Transl., 21 (1962)
, 412-416.
![]() ![]() |
|
H. Berestycki
and L. Nirenberg
, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, Journal of Geometry and Physics, 5 (1988)
, 237-275.
doi: 10.1016/0393-0440(88)90006-X.![]() ![]() ![]() |
|
H. Berestycki
and L. Nirenberg
, On the method of moving planes and the sliding method, Boletim da Sociedade Brasileira de Matemática-Bulletin/Brazilian Mathematical Society, 22 (1991)
, 1-37.
doi: 10.1007/BF01244896.![]() ![]() ![]() |
|
C. Brändle
, E. Colorado
, A. de Pablo
and U. Sánchez
, A concaveconvex elliptic problem involving the fractional Laplacian, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143 (2013)
, 39-71.
doi: 10.1017/S0308210511000175.![]() ![]() ![]() |
|
J. Busca
and B. Sirakov
, Symmetry results for semilinear elliptic systems in the whole space, J. Differential Equations, 163 (2000)
, 41-56.
doi: 10.1006/jdeq.1999.3701.![]() ![]() ![]() |
|
X. Cabré
and Y. Sire
, Nonlinear equations for fractional Laplacians, Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 31 (2014)
, 23-53.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
|
X. Cabré
and J. Tan
, Positive solutions of nonlinear problems involving the square root of the Laplacian, Advances in Mathematics, 224 (2010)
, 2052-2093.
doi: 10.1016/j.aim.2010.01.025.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
M. Cai
and L. Ma
, Moving planes for nonlinear fractional Lapla- cian equation with negative powers, Discrete and Continuous Dynamical Systems-Series A, 38 (2018)
, 4603-4615.
doi: 10.3934/dcds.2018201.![]() ![]() ![]() |
|
A. Capella
, J. Dávila
, L. Dupaigne
and Y. Sire
, Regularity of radial extremal solutions for some non-local semilinear equations, Communications in Partial Differential Equations, 36 (2011)
, 1353-1384.
doi: 10.1080/03605302.2011.562954.![]() ![]() ![]() |
|
W. Chen
, C. Li
and Y. Li
, A direct method of moving planes for the fractional Laplacian, Advances in Mathematics, 308 (2017)
, 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
|
W. Chen
and J. Zhu
, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016)
, 4758-4785.
doi: 10.1016/j.jde.2015.11.029.![]() ![]() ![]() |
|
W. Chen
and C. Li
, Classifcation of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematica Scientia, 29 (2009)
, 949-960.
doi: 10.1016/S0252-9602(09)60079-5.![]() ![]() ![]() |
|
W. Chen
, C. Li
and B. Ou
, Classifcation of solutions for an integral equation, Communications on Pure and Applied Mathematics, 59 (2006)
, 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
|
T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications,
Communications in Contemporary Mathematics, 19 (2017), 1750018(12pages).
doi: 10.1142/S0219199717500183.![]() ![]() ![]() |
|
S. Dipierro
, G. Palatucci
and E. Valdinoci
, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Le Matematiche, 68 (2013)
, 201-216.
![]() ![]() |
|
P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian,
Commun. Contemp. Math., 16 (2014), 1350023(24pages).
doi: 10.1142/S0219199713500235.![]() ![]() ![]() |
|
D. G. de Figueiredo
, Monotonicity and symmetry of solutions of elliptic systems in general domains, NoDEA Nonlinear Differential Equations Appl., 1 (1994)
, 119-123.
doi: 10.1007/BF01193947.![]() ![]() ![]() |
|
D. G. de Figueiredo
and P. L. Felmer
, A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 21 (1994)
, 387-397.
![]() ![]() |
|
B. Gidas
, W. Ni
and L. Nirenberg
, Symmetry and related properties via the maximum principle, Communications in Mathematical Physics, 68 (1979)
, 209-243.
doi: 10.1007/BF01221125.![]() ![]() ![]() |
|
B. Gidas
, W. Ni
and L. Nirenberg
, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, Adv. Math. Suppl. Stud. A, 7 (1981)
, 369-402.
![]() ![]() |
|
S. Jarohs
and T. Weth
, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Annali di Matematica Pura ed Applicata, 195 (2016)
, 273-291.
doi: 10.1007/s10231-014-0462-y.![]() ![]() ![]() |
|
C. Li
, Z. G. Wu
and H. Xu
, Maximum principles and Bôcher type theorems, Pro Natl Acad Sci USA, 115 (2018)
, 6976-6979.
![]() |
|
C. Li
and Z. G. Wu
, Radial symmetry for systems of fractional Laplacian, Acta Mathematica Scientia, 38 (2018)
, 1567-1582.
doi: 10.1016/S0252-9602(18)30832-4.![]() ![]() ![]() |
|
C. Li
, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains, Communications in Partial Differential Equations, 16 (1991)
, 491-526.
doi: 10.1080/03605309108820766.![]() ![]() ![]() |
|
C. Li
, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Communications in Partial Differential Equations, 16 (1991)
, 585-615.
doi: 10.1080/03605309108820770.![]() ![]() ![]() |
|
B. Liu
and L. Ma
, Radial symmetry results for fractional Laplacian systems, Nonlinear Analysis: Theory, Methods Applications, 146 (2016)
, 120-135.
doi: 10.1016/j.na.2016.08.022.![]() ![]() ![]() |
|
B. Liu
, Direct method of moving planes for logarithmic Laplacian system in bounded domains, Discrete and Continuous Dynamical Systems - Series A, 38 (2018)
, 5339-5349.
doi: 10.3934/dcds.2018235.![]() ![]() ![]() |
|
Y. Lü
and C. Zhou
, Symmetry for an integral system with general nonlinearity, Discrete Continuous Dynamical Systems -A, 39 (2019)
, 1533-1543.
doi: 10.3934/dcds.2018121.![]() ![]() |
|
L. Ma
and B. Liu
, Symmetry results for decay solutions of elliptic systems in the whole space, Advances in Mathematics, 225 (2010)
, 3052-3063.
doi: 10.1016/j.aim.2010.05.022.![]() ![]() ![]() |
|
X. Ros-Oton
and J. Serra
, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014)
, 275-302.
doi: 10.1016/j.matpur.2013.06.003.![]() ![]() ![]() |
|
J. Serrin
, A symmetry problem in potential theory, Archive for Rational Mechanics and Analysis, 43 (1971)
, 304-318.
doi: 10.1007/BF00250468.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Mountain Pass solutions for non-local elliptic operators, Journal Mathematical Analysis Applications, 389 (2012)
, 887-898.
doi: 10.1016/j.jmaa.2011.12.032.![]() ![]() ![]() |
|
L. Silvestre
, Regularity of the obstacle problem for a fractional power of the Laplace operator, Communications Pure Applied Mathematics, 60 (2007)
, 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
|
B. Sirakov
, On symmetry in elliptic systems, Appl. Anal., 41 (1991)
, 1-9.
doi: 10.1080/00036819108840012.![]() ![]() ![]() |
|
W. C. Troy
, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations, 42 (1981)
, 400-413.
doi: 10.1016/0022-0396(81)90113-3.![]() ![]() ![]() |
|
L. Zhang
, C. Li
, W. Chen
and T. Cheng
, A Liouville theorem for $α$-harmonic functions in $\mathbb{R}_+^n$, Discrete Continuous Dynamical Systems -A, 36 (2016)
, 1721-1736.
doi: 10.3934/dcds.2016.36.1721.![]() ![]() ![]() |
|
R. Zhuo
, W. Chen
, X. Cui
and Z. Yuan
, A Liouville theorem for the fractional Laplacian, Discrete Continuous Dynamical Systems -A, 36 (2016)
, 1125-1141.
doi: 10.3934/dcds.2016.36.1125.![]() ![]() ![]() |