March  2019, 39(3): 1573-1583. doi: 10.3934/dcds.2019069

Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China

* Corresponding author: Pengcheng Niu

Received  January 2018 Revised  April 2018 Published  December 2018

Fund Project: The authors are supported by the National Natural Science Foundation of China (No.11771354) and the first author also supported by Excellent Doctorate Cultivating Foundation of Northwestern Polytechnical University

In this paper, we consider the fractional p-Laplacian equation
$( - \Delta )_p^su(x) = f(u(x)), $
where the fractional p-Laplacian is of the form
$( - \Delta )_p^su(x) = {C_{n, s, p}}PV\int_{{\mathbb{R}^n}} {\frac{{{{\left| {u(x) - u(y)} \right|}^{p - 2}}(u(x) - u(y))}}{{{{\left| {x - y} \right|}^{n + sp}}}}} dy.$
By proving a narrow region principle to the equation above and extending the direct method of moving planes used in fractional Laplacian equations, we establish the radial symmetry in the unit ball and nonexistence on the half space for the solutions, respectively.
Citation: Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069
References:
[1]

C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Comm. Pure Appl. Math., 65 (2012), 337-380.  doi: 10.1002/cpa.21379.  Google Scholar

[2]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb., 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[3]

L. BrascoE. Parini and M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845.  doi: 10.3934/dcds.2016.36.1813.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[5]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar

[6]

L. F. Cao and Z. H. Dai, A Liouville-type theorem for an integral equation on a half-space ${\mathbb{R}}_ + ^n,$, J. Math. Anal. Appl., 389 (2012), 1365-1373.  doi: 10.1016/j.jmaa.2012.01.015.  Google Scholar

[7]

H. Chen and Z. X. Lv, The properties of positive solutions to an integral system involving Wolff potential, Discrete Contin. Dyn. Syst., 34 (2014), 1879-1904.  doi: 10.3934/dcds.2014.34.1879.  Google Scholar

[8]

W. X. Chen and C. M. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[9]

W. X. Chen, C. M. Li and G. F. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017), Art. 29, 18 pp. doi: 10.1007/s00526-017-1110-3.  Google Scholar

[10]

W. X. ChenY. Q. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Advances in Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[11]

W. X. ChenC. M. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.  doi: 10.3934/dcds.2005.12.347.  Google Scholar

[12]

W. X. ChenC. M. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[13]

W. X. ChenC. M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[14]

W. X. Chen and J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar

[15]

R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood -Sobolev inequality, Calc. Var. Partical Differential Equations, 39 (2010), 85-99.  doi: 10.1007/s00526-009-0302-x.  Google Scholar

[16]

X. L. HanG. Z. Lu and J. Y. Zhu, Characterization of balls in terms of Bessel-potential integral equation, J. Differential Equations, 252 (2012), 1589-1602.  doi: 10.1016/j.jde.2011.07.037.  Google Scholar

[17]

Y. T. Lei, Asymptotic properties of positive solutions of the Hardy-Sobolev type equations, J. Differential Equations, 254 (2013), 1774-1799.  doi: 10.1016/j.jde.2012.11.008.  Google Scholar

[18]

B. Y. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Anal., 146 (2016), 120-135.  doi: 10.1016/j.na.2016.08.022.  Google Scholar

[19]

G. Z. Lu and J. Y. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal., 75 (2012), 3036-3048.  doi: 10.1016/j.na.2011.11.036.  Google Scholar

[20]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[21]

P. C. NiuL. Y. Wu and X. X. Ji, Positive solutions to nonlinear systems involving fully nonlinear fractional operators, Frac. Calc. Appl. Anal., 21 (2018), 552-574.  doi: 10.1515/fca-2018-0030.  Google Scholar

[22]

A. Quaas and A. Xia, Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in RN involving fractional Laplacian, Discrete Contin. Dyn. Syst., 37 (2017), 2653-2668.  doi: 10.3934/dcds.2017113.  Google Scholar

[23]

P. Y. Wang and M. Yu, Solutions of fully nonlinear nonlocal systems, J. Math. Anal. Appl., 450 (2017), 982-995.  doi: 10.1016/j.jmaa.2017.01.070.  Google Scholar

[24]

P. Y. Wang and P. C. Niu, Liouville's Theorem for a Fractional Elliptic System, to appeared in Discrete Contin. Dyn. Syst., 2018. Google Scholar

show all references

References:
[1]

C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Comm. Pure Appl. Math., 65 (2012), 337-380.  doi: 10.1002/cpa.21379.  Google Scholar

[2]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb., 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[3]

L. BrascoE. Parini and M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845.  doi: 10.3934/dcds.2016.36.1813.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[5]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar

[6]

L. F. Cao and Z. H. Dai, A Liouville-type theorem for an integral equation on a half-space ${\mathbb{R}}_ + ^n,$, J. Math. Anal. Appl., 389 (2012), 1365-1373.  doi: 10.1016/j.jmaa.2012.01.015.  Google Scholar

[7]

H. Chen and Z. X. Lv, The properties of positive solutions to an integral system involving Wolff potential, Discrete Contin. Dyn. Syst., 34 (2014), 1879-1904.  doi: 10.3934/dcds.2014.34.1879.  Google Scholar

[8]

W. X. Chen and C. M. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[9]

W. X. Chen, C. M. Li and G. F. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017), Art. 29, 18 pp. doi: 10.1007/s00526-017-1110-3.  Google Scholar

[10]

W. X. ChenY. Q. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Advances in Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[11]

W. X. ChenC. M. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.  doi: 10.3934/dcds.2005.12.347.  Google Scholar

[12]

W. X. ChenC. M. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[13]

W. X. ChenC. M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[14]

W. X. Chen and J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar

[15]

R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood -Sobolev inequality, Calc. Var. Partical Differential Equations, 39 (2010), 85-99.  doi: 10.1007/s00526-009-0302-x.  Google Scholar

[16]

X. L. HanG. Z. Lu and J. Y. Zhu, Characterization of balls in terms of Bessel-potential integral equation, J. Differential Equations, 252 (2012), 1589-1602.  doi: 10.1016/j.jde.2011.07.037.  Google Scholar

[17]

Y. T. Lei, Asymptotic properties of positive solutions of the Hardy-Sobolev type equations, J. Differential Equations, 254 (2013), 1774-1799.  doi: 10.1016/j.jde.2012.11.008.  Google Scholar

[18]

B. Y. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Anal., 146 (2016), 120-135.  doi: 10.1016/j.na.2016.08.022.  Google Scholar

[19]

G. Z. Lu and J. Y. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal., 75 (2012), 3036-3048.  doi: 10.1016/j.na.2011.11.036.  Google Scholar

[20]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[21]

P. C. NiuL. Y. Wu and X. X. Ji, Positive solutions to nonlinear systems involving fully nonlinear fractional operators, Frac. Calc. Appl. Anal., 21 (2018), 552-574.  doi: 10.1515/fca-2018-0030.  Google Scholar

[22]

A. Quaas and A. Xia, Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in RN involving fractional Laplacian, Discrete Contin. Dyn. Syst., 37 (2017), 2653-2668.  doi: 10.3934/dcds.2017113.  Google Scholar

[23]

P. Y. Wang and M. Yu, Solutions of fully nonlinear nonlocal systems, J. Math. Anal. Appl., 450 (2017), 982-995.  doi: 10.1016/j.jmaa.2017.01.070.  Google Scholar

[24]

P. Y. Wang and P. C. Niu, Liouville's Theorem for a Fractional Elliptic System, to appeared in Discrete Contin. Dyn. Syst., 2018. Google Scholar

[1]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[2]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[3]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[4]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[5]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[6]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[7]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[8]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[9]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[10]

Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026

[11]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[12]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[13]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[14]

E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209

[15]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[16]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[17]

Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051

[18]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

[19]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[20]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (134)
  • HTML views (84)
  • Cited by (0)

Other articles
by authors

[Back to Top]