March  2019, 39(3): 1573-1583. doi: 10.3934/dcds.2019069

Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China

* Corresponding author: Pengcheng Niu

Received  January 2018 Revised  April 2018 Published  December 2018

Fund Project: The authors are supported by the National Natural Science Foundation of China (No.11771354) and the first author also supported by Excellent Doctorate Cultivating Foundation of Northwestern Polytechnical University.

In this paper, we consider the fractional p-Laplacian equation
$( - \Delta )_p^su(x) = f(u(x)), $
where the fractional p-Laplacian is of the form
$( - \Delta )_p^su(x) = {C_{n, s, p}}PV\int_{{\mathbb{R}^n}} {\frac{{{{\left| {u(x) - u(y)} \right|}^{p - 2}}(u(x) - u(y))}}{{{{\left| {x - y} \right|}^{n + sp}}}}} dy.$
By proving a narrow region principle to the equation above and extending the direct method of moving planes used in fractional Laplacian equations, we establish the radial symmetry in the unit ball and nonexistence on the half space for the solutions, respectively.
Citation: Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069
References:
[1]

C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Comm. Pure Appl. Math., 65 (2012), 337-380.  doi: 10.1002/cpa.21379.  Google Scholar

[2]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb., 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[3]

L. BrascoE. Parini and M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845.  doi: 10.3934/dcds.2016.36.1813.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[5]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar

[6]

L. F. Cao and Z. H. Dai, A Liouville-type theorem for an integral equation on a half-space ${\mathbb{R}}_ + ^n,$, J. Math. Anal. Appl., 389 (2012), 1365-1373.  doi: 10.1016/j.jmaa.2012.01.015.  Google Scholar

[7]

H. Chen and Z. X. Lv, The properties of positive solutions to an integral system involving Wolff potential, Discrete Contin. Dyn. Syst., 34 (2014), 1879-1904.  doi: 10.3934/dcds.2014.34.1879.  Google Scholar

[8]

W. X. Chen and C. M. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[9]

W. X. Chen, C. M. Li and G. F. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017), Art. 29, 18 pp. doi: 10.1007/s00526-017-1110-3.  Google Scholar

[10]

W. X. ChenY. Q. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Advances in Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[11]

W. X. ChenC. M. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.  doi: 10.3934/dcds.2005.12.347.  Google Scholar

[12]

W. X. ChenC. M. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[13]

W. X. ChenC. M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[14]

W. X. Chen and J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar

[15]

R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood -Sobolev inequality, Calc. Var. Partical Differential Equations, 39 (2010), 85-99.  doi: 10.1007/s00526-009-0302-x.  Google Scholar

[16]

X. L. HanG. Z. Lu and J. Y. Zhu, Characterization of balls in terms of Bessel-potential integral equation, J. Differential Equations, 252 (2012), 1589-1602.  doi: 10.1016/j.jde.2011.07.037.  Google Scholar

[17]

Y. T. Lei, Asymptotic properties of positive solutions of the Hardy-Sobolev type equations, J. Differential Equations, 254 (2013), 1774-1799.  doi: 10.1016/j.jde.2012.11.008.  Google Scholar

[18]

B. Y. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Anal., 146 (2016), 120-135.  doi: 10.1016/j.na.2016.08.022.  Google Scholar

[19]

G. Z. Lu and J. Y. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal., 75 (2012), 3036-3048.  doi: 10.1016/j.na.2011.11.036.  Google Scholar

[20]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[21]

P. C. NiuL. Y. Wu and X. X. Ji, Positive solutions to nonlinear systems involving fully nonlinear fractional operators, Frac. Calc. Appl. Anal., 21 (2018), 552-574.  doi: 10.1515/fca-2018-0030.  Google Scholar

[22]

A. Quaas and A. Xia, Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in RN involving fractional Laplacian, Discrete Contin. Dyn. Syst., 37 (2017), 2653-2668.  doi: 10.3934/dcds.2017113.  Google Scholar

[23]

P. Y. Wang and M. Yu, Solutions of fully nonlinear nonlocal systems, J. Math. Anal. Appl., 450 (2017), 982-995.  doi: 10.1016/j.jmaa.2017.01.070.  Google Scholar

[24]

P. Y. Wang and P. C. Niu, Liouville's Theorem for a Fractional Elliptic System, to appeared in Discrete Contin. Dyn. Syst., 2018. Google Scholar

show all references

References:
[1]

C. BjorlandL. Caffarelli and A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Comm. Pure Appl. Math., 65 (2012), 337-380.  doi: 10.1002/cpa.21379.  Google Scholar

[2]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb., 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[3]

L. BrascoE. Parini and M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845.  doi: 10.3934/dcds.2016.36.1813.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[5]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar

[6]

L. F. Cao and Z. H. Dai, A Liouville-type theorem for an integral equation on a half-space ${\mathbb{R}}_ + ^n,$, J. Math. Anal. Appl., 389 (2012), 1365-1373.  doi: 10.1016/j.jmaa.2012.01.015.  Google Scholar

[7]

H. Chen and Z. X. Lv, The properties of positive solutions to an integral system involving Wolff potential, Discrete Contin. Dyn. Syst., 34 (2014), 1879-1904.  doi: 10.3934/dcds.2014.34.1879.  Google Scholar

[8]

W. X. Chen and C. M. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[9]

W. X. Chen, C. M. Li and G. F. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017), Art. 29, 18 pp. doi: 10.1007/s00526-017-1110-3.  Google Scholar

[10]

W. X. ChenY. Q. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Advances in Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[11]

W. X. ChenC. M. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.  doi: 10.3934/dcds.2005.12.347.  Google Scholar

[12]

W. X. ChenC. M. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[13]

W. X. ChenC. M. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[14]

W. X. Chen and J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar

[15]

R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood -Sobolev inequality, Calc. Var. Partical Differential Equations, 39 (2010), 85-99.  doi: 10.1007/s00526-009-0302-x.  Google Scholar

[16]

X. L. HanG. Z. Lu and J. Y. Zhu, Characterization of balls in terms of Bessel-potential integral equation, J. Differential Equations, 252 (2012), 1589-1602.  doi: 10.1016/j.jde.2011.07.037.  Google Scholar

[17]

Y. T. Lei, Asymptotic properties of positive solutions of the Hardy-Sobolev type equations, J. Differential Equations, 254 (2013), 1774-1799.  doi: 10.1016/j.jde.2012.11.008.  Google Scholar

[18]

B. Y. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Anal., 146 (2016), 120-135.  doi: 10.1016/j.na.2016.08.022.  Google Scholar

[19]

G. Z. Lu and J. Y. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal., 75 (2012), 3036-3048.  doi: 10.1016/j.na.2011.11.036.  Google Scholar

[20]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[21]

P. C. NiuL. Y. Wu and X. X. Ji, Positive solutions to nonlinear systems involving fully nonlinear fractional operators, Frac. Calc. Appl. Anal., 21 (2018), 552-574.  doi: 10.1515/fca-2018-0030.  Google Scholar

[22]

A. Quaas and A. Xia, Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in RN involving fractional Laplacian, Discrete Contin. Dyn. Syst., 37 (2017), 2653-2668.  doi: 10.3934/dcds.2017113.  Google Scholar

[23]

P. Y. Wang and M. Yu, Solutions of fully nonlinear nonlocal systems, J. Math. Anal. Appl., 450 (2017), 982-995.  doi: 10.1016/j.jmaa.2017.01.070.  Google Scholar

[24]

P. Y. Wang and P. C. Niu, Liouville's Theorem for a Fractional Elliptic System, to appeared in Discrete Contin. Dyn. Syst., 2018. Google Scholar

[1]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[2]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[3]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[4]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[5]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[6]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[7]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[8]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021029

[9]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[10]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[11]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[12]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[13]

Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032

[14]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[15]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[16]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[17]

Amanda E. Diegel. A C0 interior penalty method for the Cahn-Hilliard equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021030

[18]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[19]

Nadezhda Maltugueva, Nikolay Pogodaev. Modeling of crowds in regions with moving obstacles. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021066

[20]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (369)
  • HTML views (143)
  • Cited by (7)

Other articles
by authors

[Back to Top]