April  2019, 39(4): 1685-1730. doi: 10.3934/dcds.2019074

Riccati equations for linear Hamiltonian systems without controllability condition

Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic

Dedicated to the memory of Professor Russell A. Johnson.

Received  August 2017 Revised  July 2018 Published  January 2019

Fund Project: This research was supported by the Czech Science Foundation under grant GA16-00611S.

In this paper we develop new theory of Riccati matrix differential equations for linear Hamiltonian systems, which do not require any controllability assumption. When the system is nonoscillatory, it is known from our previous work that conjoined bases of the system with eventually the same image form a special structure called a genus. We show that for every such a genus there is an associated Riccati equation. We study the properties of symmetric solutions of these Riccati equations and their connection with conjoined bases of the system. For a given genus, we pay a special attention to distinguished solutions at infinity of the associated Riccati equation and their relationship with the principal solutions at infinity of the system in the considered genus. We show the uniqueness of the distinguished solution at infinity of the Riccati equation corresponding to the minimal genus. This study essentially extends and completes the work of W. T. Reid (1964, 1972), W. A. Coppel (1971), P. Hartman (1964), W. Kratz (1995), and other authors who considered the Riccati equation and its distinguished solution at infinity for invertible conjoined bases, i.e., for the maximal genus in our setting.

Citation: Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074
References:
[1]

J. Allwright and R. Vinter, Second order conditions for periodic optimal control problems, Control Cybernet., 34 (2005), 617-643.   Google Scholar

[2] F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York - London, 1964.   Google Scholar
[3] R. Bellman, Introduction to the Mathematical Theory of Control Processes. Vol. I: Linear Equations and Quadratic Criteria, Mathematics in Science and Engineering, Vol. 40, Academic Press, New York, NY, 1967.   Google Scholar
[4]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Second Edition, Springer-Verlag, New York, NY, 2003.  Google Scholar

[5] D. S. Bernstein, Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory, Princeton University Press, Princeton, 2005.   Google Scholar
[6]

S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Reprint of the 1991 corrected reprint of the 1979 original, Classics in Applied Mathematics, Vol. 56, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898719048.ch0.  Google Scholar

[7]

W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin - New York, 1971.  Google Scholar

[8]

Z. Došlá and O. Došlý, Quadratic functionals with general boundary conditions, Appl. Math. Optim., 36 (1997), 243-262.  doi: 10.1007/s002459900062.  Google Scholar

[9]

P. Hartman, Ordinary Differential Equations, John Wiley, New York, 1964.  Google Scholar

[10]

M. R. Hestenes, Quadratic control problems, J. Optim. Theory Appl., 17 (1975), 1-42.  doi: 10.1007/BF00933915.  Google Scholar

[11]

R. Hilscher and V. Zeidan, Applications of time scale symplectic systems without normality, J. Math. Anal. Appl., 340 (2008), 451-465.  doi: 10.1016/j.jmaa.2007.07.077.  Google Scholar

[12]

R. Hilscher and V. Zeidan, Time scale embedding theorem and coercivity of quadratic functionals, Analysis (Munich), 28 (2008), 1-28.  doi: 10.1524/anly.2008.0900.  Google Scholar

[13]

R. Hilscher and V. Zeidan, Riccati equations for abnormal time scale quadratic functionals, J. Differential Equations, 244 (2008), 1410-1447.  doi: 10.1016/j.jde.2007.10.012.  Google Scholar

[14]

R. JohnsonC. Núñez and R. Obaya, Dynamical methods for linear Hamiltonian systems with applications to control processes, J. Dynam. Differential Equations, 25 (2013), 679-713.  doi: 10.1007/s10884-013-9300-y.  Google Scholar

[15]

R. Johnson, R. Obaya, S. Novo, C. Núñez and R. Fabbri, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control, Developments in Mathematics, Vol. 36, Springer, Cham, 2016. doi: 10.1007/978-3-319-29025-6.  Google Scholar

[16]

R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory, Trans. ASME Ser. D J. Basic Engrg., 83 (1961), 95-108.  doi: 10.1115/1.3658902.  Google Scholar

[17]

W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Akademie Verlag, Berlin, 1995.  Google Scholar

[18]

W. Kratz, Definiteness of quadratic functionals, Analysis, 23 (2003), 163-183.  doi: 10.1524/anly.2003.23.2.163.  Google Scholar

[19]

B. P. Molinari, Nonnegativity of a quadratic functional, SIAM J. Control, 13 (1975), 792-806.  doi: 10.1137/0313046.  Google Scholar

[20]

W. T. Reid, Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems, Pacific J. Math., 13 (1963), 665-685.  doi: 10.2140/pjm.1963.13.665.  Google Scholar

[21]

W. T. Reid, Principal solutions of nonoscillatory linear differential systems, J. Math. Anal. Appl., 9 (1964), 397-423.  doi: 10.1016/0022-247X(64)90026-5.  Google Scholar

[22]

W. T. Reid, Ordinary Differential Equations, John Wiley & Sons, Inc., New York –London –Sydney, 1971.  Google Scholar

[23] W. T. Reid, Riccati Differential Equations, Academic Press, New York –London, 1972.   Google Scholar
[24]

W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, New York –Berlin –Heidelberg, 1980.  Google Scholar

[25]

V. Růžičková, Discrete Symplectic Systems and Definiteness of Quadratic Functionals, Ph.D thesis, Masaryk University, Brno, 2006. Available from https://is.muni.cz/th/p9iz7/?lang=en. Google Scholar

[26]

P. Šepitka, Theory of Principal Solutions at Infinity for Linear Hamiltonian Systems, Ph.D thesis, Masaryk University, Brno, 2014. Available from https://is.muni.cz/th/vqad7/?lang=en. Google Scholar

[27]

P. Šepitka, Genera of conjoined bases for (non)oscillatory linear Hamiltonian systems: extended theory, submitted, 2017. Google Scholar

[28]

P. Šepitka and R. Šimon Hilscher, Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems, J. Dynam. Differential Equations, 26 (2014), 57-91.  doi: 10.1007/s10884-013-9342-1.  Google Scholar

[29]

P. Šepitka and R. Šimon Hilscher, Principal solutions at infinity of given ranks for nonoscillatory linear Hamiltonian systems, J. Dynam. Differential Equations, 27 (2015), 137-175.  doi: 10.1007/s10884-014-9389-7.  Google Scholar

[30]

P. Šepitka and R. Šimon Hilscher, Principal and antiprincipal solutions at infinity of linear Hamiltonian systems, J. Differential Equations, 259 (2015), 4651-4682.  doi: 10.1016/j.jde.2015.06.027.  Google Scholar

[31]

P. Šepitka and R. Šimon Hilscher, Genera of conjoined bases of linear Hamiltonian systems and limit characterization of principal solutions at infinity, J. Differential Equations, 260 (2016), 6581-6603.  doi: 10.1016/j.jde.2016.01.004.  Google Scholar

[32]

P. Šepitka and R. Šimon Hilscher, Reid's construction of minimal principal solution at infinity for linear Hamiltonian systems, in Differential and Difference Equations with Applications (eds. S. Pinelas, Z. Došlá, O. Došlý and P. E. Kloeden), Proceedings of the International Conference on Differential & Difference Equations and Applications (Amadora, 2015), Springer Proceedings in Mathematics & Statistics, Vol. 164, Springer, (2016), 359–369. doi: 10.1007/978-3-319-32857-7_34.  Google Scholar

[33]

R. Šimon Hilscher, On general Sturmian theory for abnormal linear Hamiltonian systems, in Dynamical Systems, Differential Equations and Applications (eds. W. Feng, Z. Feng, M. Grasselli, A. Ibragimov, X. Lu, S. Siegmund and J. Voigt), Proceedings of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Dresden, 2010), Discrete Contin. Dynam. Systems, Suppl. 2011, American Institute of Mathematical Sciences (AIMS), (2011), 684–691.  Google Scholar

[34]

J. L. Speyer and D. H. Jacobson, Primer on Optimal Control Theory, Advances in Design and Control, Vol. 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. doi: 10.1137/1.9780898718560.  Google Scholar

[35]

G. Stefani and P. Zezza, Constrained regular LQ-control problems, SIAM J. Control Optim., 35 (1997), 876-900.  doi: 10.1137/S0363012995286848.  Google Scholar

[36]

M. Wahrheit, Eigenvalue problems and oscillation of linear Hamiltonian systems, Int. J. Difference Equ., 2 (2007), 221-244.   Google Scholar

[37]

V. Zeidan, Sufficiency criteria via focal points and via coupled points, SIAM J. Control Optim., 30 (1992), 82-98.  doi: 10.1137/0330006.  Google Scholar

[38]

V. Zeidan, The Riccati equation for optimal control problems with mixed state-control constraints: necessity and sufficiency, SIAM J. Control Optim., 32 (1994), 1297-1321.  doi: 10.1137/S0363012992233640.  Google Scholar

[39]

V. Zeidan, New second-order optimality conditions for variational problems with C2-Hamiltonians, SIAM J. Control Optim., 40 (2001), 577-609.  doi: 10.1137/S0363012999358725.  Google Scholar

show all references

References:
[1]

J. Allwright and R. Vinter, Second order conditions for periodic optimal control problems, Control Cybernet., 34 (2005), 617-643.   Google Scholar

[2] F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York - London, 1964.   Google Scholar
[3] R. Bellman, Introduction to the Mathematical Theory of Control Processes. Vol. I: Linear Equations and Quadratic Criteria, Mathematics in Science and Engineering, Vol. 40, Academic Press, New York, NY, 1967.   Google Scholar
[4]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Second Edition, Springer-Verlag, New York, NY, 2003.  Google Scholar

[5] D. S. Bernstein, Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory, Princeton University Press, Princeton, 2005.   Google Scholar
[6]

S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Reprint of the 1991 corrected reprint of the 1979 original, Classics in Applied Mathematics, Vol. 56, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898719048.ch0.  Google Scholar

[7]

W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin - New York, 1971.  Google Scholar

[8]

Z. Došlá and O. Došlý, Quadratic functionals with general boundary conditions, Appl. Math. Optim., 36 (1997), 243-262.  doi: 10.1007/s002459900062.  Google Scholar

[9]

P. Hartman, Ordinary Differential Equations, John Wiley, New York, 1964.  Google Scholar

[10]

M. R. Hestenes, Quadratic control problems, J. Optim. Theory Appl., 17 (1975), 1-42.  doi: 10.1007/BF00933915.  Google Scholar

[11]

R. Hilscher and V. Zeidan, Applications of time scale symplectic systems without normality, J. Math. Anal. Appl., 340 (2008), 451-465.  doi: 10.1016/j.jmaa.2007.07.077.  Google Scholar

[12]

R. Hilscher and V. Zeidan, Time scale embedding theorem and coercivity of quadratic functionals, Analysis (Munich), 28 (2008), 1-28.  doi: 10.1524/anly.2008.0900.  Google Scholar

[13]

R. Hilscher and V. Zeidan, Riccati equations for abnormal time scale quadratic functionals, J. Differential Equations, 244 (2008), 1410-1447.  doi: 10.1016/j.jde.2007.10.012.  Google Scholar

[14]

R. JohnsonC. Núñez and R. Obaya, Dynamical methods for linear Hamiltonian systems with applications to control processes, J. Dynam. Differential Equations, 25 (2013), 679-713.  doi: 10.1007/s10884-013-9300-y.  Google Scholar

[15]

R. Johnson, R. Obaya, S. Novo, C. Núñez and R. Fabbri, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control, Developments in Mathematics, Vol. 36, Springer, Cham, 2016. doi: 10.1007/978-3-319-29025-6.  Google Scholar

[16]

R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory, Trans. ASME Ser. D J. Basic Engrg., 83 (1961), 95-108.  doi: 10.1115/1.3658902.  Google Scholar

[17]

W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Akademie Verlag, Berlin, 1995.  Google Scholar

[18]

W. Kratz, Definiteness of quadratic functionals, Analysis, 23 (2003), 163-183.  doi: 10.1524/anly.2003.23.2.163.  Google Scholar

[19]

B. P. Molinari, Nonnegativity of a quadratic functional, SIAM J. Control, 13 (1975), 792-806.  doi: 10.1137/0313046.  Google Scholar

[20]

W. T. Reid, Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems, Pacific J. Math., 13 (1963), 665-685.  doi: 10.2140/pjm.1963.13.665.  Google Scholar

[21]

W. T. Reid, Principal solutions of nonoscillatory linear differential systems, J. Math. Anal. Appl., 9 (1964), 397-423.  doi: 10.1016/0022-247X(64)90026-5.  Google Scholar

[22]

W. T. Reid, Ordinary Differential Equations, John Wiley & Sons, Inc., New York –London –Sydney, 1971.  Google Scholar

[23] W. T. Reid, Riccati Differential Equations, Academic Press, New York –London, 1972.   Google Scholar
[24]

W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, New York –Berlin –Heidelberg, 1980.  Google Scholar

[25]

V. Růžičková, Discrete Symplectic Systems and Definiteness of Quadratic Functionals, Ph.D thesis, Masaryk University, Brno, 2006. Available from https://is.muni.cz/th/p9iz7/?lang=en. Google Scholar

[26]

P. Šepitka, Theory of Principal Solutions at Infinity for Linear Hamiltonian Systems, Ph.D thesis, Masaryk University, Brno, 2014. Available from https://is.muni.cz/th/vqad7/?lang=en. Google Scholar

[27]

P. Šepitka, Genera of conjoined bases for (non)oscillatory linear Hamiltonian systems: extended theory, submitted, 2017. Google Scholar

[28]

P. Šepitka and R. Šimon Hilscher, Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems, J. Dynam. Differential Equations, 26 (2014), 57-91.  doi: 10.1007/s10884-013-9342-1.  Google Scholar

[29]

P. Šepitka and R. Šimon Hilscher, Principal solutions at infinity of given ranks for nonoscillatory linear Hamiltonian systems, J. Dynam. Differential Equations, 27 (2015), 137-175.  doi: 10.1007/s10884-014-9389-7.  Google Scholar

[30]

P. Šepitka and R. Šimon Hilscher, Principal and antiprincipal solutions at infinity of linear Hamiltonian systems, J. Differential Equations, 259 (2015), 4651-4682.  doi: 10.1016/j.jde.2015.06.027.  Google Scholar

[31]

P. Šepitka and R. Šimon Hilscher, Genera of conjoined bases of linear Hamiltonian systems and limit characterization of principal solutions at infinity, J. Differential Equations, 260 (2016), 6581-6603.  doi: 10.1016/j.jde.2016.01.004.  Google Scholar

[32]

P. Šepitka and R. Šimon Hilscher, Reid's construction of minimal principal solution at infinity for linear Hamiltonian systems, in Differential and Difference Equations with Applications (eds. S. Pinelas, Z. Došlá, O. Došlý and P. E. Kloeden), Proceedings of the International Conference on Differential & Difference Equations and Applications (Amadora, 2015), Springer Proceedings in Mathematics & Statistics, Vol. 164, Springer, (2016), 359–369. doi: 10.1007/978-3-319-32857-7_34.  Google Scholar

[33]

R. Šimon Hilscher, On general Sturmian theory for abnormal linear Hamiltonian systems, in Dynamical Systems, Differential Equations and Applications (eds. W. Feng, Z. Feng, M. Grasselli, A. Ibragimov, X. Lu, S. Siegmund and J. Voigt), Proceedings of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Dresden, 2010), Discrete Contin. Dynam. Systems, Suppl. 2011, American Institute of Mathematical Sciences (AIMS), (2011), 684–691.  Google Scholar

[34]

J. L. Speyer and D. H. Jacobson, Primer on Optimal Control Theory, Advances in Design and Control, Vol. 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. doi: 10.1137/1.9780898718560.  Google Scholar

[35]

G. Stefani and P. Zezza, Constrained regular LQ-control problems, SIAM J. Control Optim., 35 (1997), 876-900.  doi: 10.1137/S0363012995286848.  Google Scholar

[36]

M. Wahrheit, Eigenvalue problems and oscillation of linear Hamiltonian systems, Int. J. Difference Equ., 2 (2007), 221-244.   Google Scholar

[37]

V. Zeidan, Sufficiency criteria via focal points and via coupled points, SIAM J. Control Optim., 30 (1992), 82-98.  doi: 10.1137/0330006.  Google Scholar

[38]

V. Zeidan, The Riccati equation for optimal control problems with mixed state-control constraints: necessity and sufficiency, SIAM J. Control Optim., 32 (1994), 1297-1321.  doi: 10.1137/S0363012992233640.  Google Scholar

[39]

V. Zeidan, New second-order optimality conditions for variational problems with C2-Hamiltonians, SIAM J. Control Optim., 40 (2001), 577-609.  doi: 10.1137/S0363012999358725.  Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[3]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[13]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[16]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[19]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (162)
  • HTML views (145)
  • Cited by (3)

Other articles
by authors

[Back to Top]