April  2019, 39(4): 1685-1730. doi: 10.3934/dcds.2019074

Riccati equations for linear Hamiltonian systems without controllability condition

Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic

Dedicated to the memory of Professor Russell A. Johnson.

Received  August 2017 Revised  July 2018 Published  January 2019

Fund Project: This research was supported by the Czech Science Foundation under grant GA16-00611S

In this paper we develop new theory of Riccati matrix differential equations for linear Hamiltonian systems, which do not require any controllability assumption. When the system is nonoscillatory, it is known from our previous work that conjoined bases of the system with eventually the same image form a special structure called a genus. We show that for every such a genus there is an associated Riccati equation. We study the properties of symmetric solutions of these Riccati equations and their connection with conjoined bases of the system. For a given genus, we pay a special attention to distinguished solutions at infinity of the associated Riccati equation and their relationship with the principal solutions at infinity of the system in the considered genus. We show the uniqueness of the distinguished solution at infinity of the Riccati equation corresponding to the minimal genus. This study essentially extends and completes the work of W. T. Reid (1964, 1972), W. A. Coppel (1971), P. Hartman (1964), W. Kratz (1995), and other authors who considered the Riccati equation and its distinguished solution at infinity for invertible conjoined bases, i.e., for the maximal genus in our setting.

Citation: Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074
References:
[1]

J. Allwright and R. Vinter, Second order conditions for periodic optimal control problems, Control Cybernet., 34 (2005), 617-643.   Google Scholar

[2] F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York - London, 1964.   Google Scholar
[3] R. Bellman, Introduction to the Mathematical Theory of Control Processes. Vol. I: Linear Equations and Quadratic Criteria, Mathematics in Science and Engineering, Vol. 40, Academic Press, New York, NY, 1967.   Google Scholar
[4]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Second Edition, Springer-Verlag, New York, NY, 2003.  Google Scholar

[5] D. S. Bernstein, Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory, Princeton University Press, Princeton, 2005.   Google Scholar
[6]

S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Reprint of the 1991 corrected reprint of the 1979 original, Classics in Applied Mathematics, Vol. 56, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898719048.ch0.  Google Scholar

[7]

W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin - New York, 1971.  Google Scholar

[8]

Z. Došlá and O. Došlý, Quadratic functionals with general boundary conditions, Appl. Math. Optim., 36 (1997), 243-262.  doi: 10.1007/s002459900062.  Google Scholar

[9]

P. Hartman, Ordinary Differential Equations, John Wiley, New York, 1964.  Google Scholar

[10]

M. R. Hestenes, Quadratic control problems, J. Optim. Theory Appl., 17 (1975), 1-42.  doi: 10.1007/BF00933915.  Google Scholar

[11]

R. Hilscher and V. Zeidan, Applications of time scale symplectic systems without normality, J. Math. Anal. Appl., 340 (2008), 451-465.  doi: 10.1016/j.jmaa.2007.07.077.  Google Scholar

[12]

R. Hilscher and V. Zeidan, Time scale embedding theorem and coercivity of quadratic functionals, Analysis (Munich), 28 (2008), 1-28.  doi: 10.1524/anly.2008.0900.  Google Scholar

[13]

R. Hilscher and V. Zeidan, Riccati equations for abnormal time scale quadratic functionals, J. Differential Equations, 244 (2008), 1410-1447.  doi: 10.1016/j.jde.2007.10.012.  Google Scholar

[14]

R. JohnsonC. Núñez and R. Obaya, Dynamical methods for linear Hamiltonian systems with applications to control processes, J. Dynam. Differential Equations, 25 (2013), 679-713.  doi: 10.1007/s10884-013-9300-y.  Google Scholar

[15]

R. Johnson, R. Obaya, S. Novo, C. Núñez and R. Fabbri, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control, Developments in Mathematics, Vol. 36, Springer, Cham, 2016. doi: 10.1007/978-3-319-29025-6.  Google Scholar

[16]

R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory, Trans. ASME Ser. D J. Basic Engrg., 83 (1961), 95-108.  doi: 10.1115/1.3658902.  Google Scholar

[17]

W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Akademie Verlag, Berlin, 1995.  Google Scholar

[18]

W. Kratz, Definiteness of quadratic functionals, Analysis, 23 (2003), 163-183.  doi: 10.1524/anly.2003.23.2.163.  Google Scholar

[19]

B. P. Molinari, Nonnegativity of a quadratic functional, SIAM J. Control, 13 (1975), 792-806.  doi: 10.1137/0313046.  Google Scholar

[20]

W. T. Reid, Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems, Pacific J. Math., 13 (1963), 665-685.  doi: 10.2140/pjm.1963.13.665.  Google Scholar

[21]

W. T. Reid, Principal solutions of nonoscillatory linear differential systems, J. Math. Anal. Appl., 9 (1964), 397-423.  doi: 10.1016/0022-247X(64)90026-5.  Google Scholar

[22]

W. T. Reid, Ordinary Differential Equations, John Wiley & Sons, Inc., New York –London –Sydney, 1971.  Google Scholar

[23] W. T. Reid, Riccati Differential Equations, Academic Press, New York –London, 1972.   Google Scholar
[24]

W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, New York –Berlin –Heidelberg, 1980.  Google Scholar

[25]

V. Růžičková, Discrete Symplectic Systems and Definiteness of Quadratic Functionals, Ph.D thesis, Masaryk University, Brno, 2006. Available from https://is.muni.cz/th/p9iz7/?lang=en. Google Scholar

[26]

P. Šepitka, Theory of Principal Solutions at Infinity for Linear Hamiltonian Systems, Ph.D thesis, Masaryk University, Brno, 2014. Available from https://is.muni.cz/th/vqad7/?lang=en. Google Scholar

[27]

P. Šepitka, Genera of conjoined bases for (non)oscillatory linear Hamiltonian systems: extended theory, submitted, 2017. Google Scholar

[28]

P. Šepitka and R. Šimon Hilscher, Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems, J. Dynam. Differential Equations, 26 (2014), 57-91.  doi: 10.1007/s10884-013-9342-1.  Google Scholar

[29]

P. Šepitka and R. Šimon Hilscher, Principal solutions at infinity of given ranks for nonoscillatory linear Hamiltonian systems, J. Dynam. Differential Equations, 27 (2015), 137-175.  doi: 10.1007/s10884-014-9389-7.  Google Scholar

[30]

P. Šepitka and R. Šimon Hilscher, Principal and antiprincipal solutions at infinity of linear Hamiltonian systems, J. Differential Equations, 259 (2015), 4651-4682.  doi: 10.1016/j.jde.2015.06.027.  Google Scholar

[31]

P. Šepitka and R. Šimon Hilscher, Genera of conjoined bases of linear Hamiltonian systems and limit characterization of principal solutions at infinity, J. Differential Equations, 260 (2016), 6581-6603.  doi: 10.1016/j.jde.2016.01.004.  Google Scholar

[32]

P. Šepitka and R. Šimon Hilscher, Reid's construction of minimal principal solution at infinity for linear Hamiltonian systems, in Differential and Difference Equations with Applications (eds. S. Pinelas, Z. Došlá, O. Došlý and P. E. Kloeden), Proceedings of the International Conference on Differential & Difference Equations and Applications (Amadora, 2015), Springer Proceedings in Mathematics & Statistics, Vol. 164, Springer, (2016), 359–369. doi: 10.1007/978-3-319-32857-7_34.  Google Scholar

[33]

R. Šimon Hilscher, On general Sturmian theory for abnormal linear Hamiltonian systems, in Dynamical Systems, Differential Equations and Applications (eds. W. Feng, Z. Feng, M. Grasselli, A. Ibragimov, X. Lu, S. Siegmund and J. Voigt), Proceedings of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Dresden, 2010), Discrete Contin. Dynam. Systems, Suppl. 2011, American Institute of Mathematical Sciences (AIMS), (2011), 684–691.  Google Scholar

[34]

J. L. Speyer and D. H. Jacobson, Primer on Optimal Control Theory, Advances in Design and Control, Vol. 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. doi: 10.1137/1.9780898718560.  Google Scholar

[35]

G. Stefani and P. Zezza, Constrained regular LQ-control problems, SIAM J. Control Optim., 35 (1997), 876-900.  doi: 10.1137/S0363012995286848.  Google Scholar

[36]

M. Wahrheit, Eigenvalue problems and oscillation of linear Hamiltonian systems, Int. J. Difference Equ., 2 (2007), 221-244.   Google Scholar

[37]

V. Zeidan, Sufficiency criteria via focal points and via coupled points, SIAM J. Control Optim., 30 (1992), 82-98.  doi: 10.1137/0330006.  Google Scholar

[38]

V. Zeidan, The Riccati equation for optimal control problems with mixed state-control constraints: necessity and sufficiency, SIAM J. Control Optim., 32 (1994), 1297-1321.  doi: 10.1137/S0363012992233640.  Google Scholar

[39]

V. Zeidan, New second-order optimality conditions for variational problems with C2-Hamiltonians, SIAM J. Control Optim., 40 (2001), 577-609.  doi: 10.1137/S0363012999358725.  Google Scholar

show all references

References:
[1]

J. Allwright and R. Vinter, Second order conditions for periodic optimal control problems, Control Cybernet., 34 (2005), 617-643.   Google Scholar

[2] F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York - London, 1964.   Google Scholar
[3] R. Bellman, Introduction to the Mathematical Theory of Control Processes. Vol. I: Linear Equations and Quadratic Criteria, Mathematics in Science and Engineering, Vol. 40, Academic Press, New York, NY, 1967.   Google Scholar
[4]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Second Edition, Springer-Verlag, New York, NY, 2003.  Google Scholar

[5] D. S. Bernstein, Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory, Princeton University Press, Princeton, 2005.   Google Scholar
[6]

S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Reprint of the 1991 corrected reprint of the 1979 original, Classics in Applied Mathematics, Vol. 56, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898719048.ch0.  Google Scholar

[7]

W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin - New York, 1971.  Google Scholar

[8]

Z. Došlá and O. Došlý, Quadratic functionals with general boundary conditions, Appl. Math. Optim., 36 (1997), 243-262.  doi: 10.1007/s002459900062.  Google Scholar

[9]

P. Hartman, Ordinary Differential Equations, John Wiley, New York, 1964.  Google Scholar

[10]

M. R. Hestenes, Quadratic control problems, J. Optim. Theory Appl., 17 (1975), 1-42.  doi: 10.1007/BF00933915.  Google Scholar

[11]

R. Hilscher and V. Zeidan, Applications of time scale symplectic systems without normality, J. Math. Anal. Appl., 340 (2008), 451-465.  doi: 10.1016/j.jmaa.2007.07.077.  Google Scholar

[12]

R. Hilscher and V. Zeidan, Time scale embedding theorem and coercivity of quadratic functionals, Analysis (Munich), 28 (2008), 1-28.  doi: 10.1524/anly.2008.0900.  Google Scholar

[13]

R. Hilscher and V. Zeidan, Riccati equations for abnormal time scale quadratic functionals, J. Differential Equations, 244 (2008), 1410-1447.  doi: 10.1016/j.jde.2007.10.012.  Google Scholar

[14]

R. JohnsonC. Núñez and R. Obaya, Dynamical methods for linear Hamiltonian systems with applications to control processes, J. Dynam. Differential Equations, 25 (2013), 679-713.  doi: 10.1007/s10884-013-9300-y.  Google Scholar

[15]

R. Johnson, R. Obaya, S. Novo, C. Núñez and R. Fabbri, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control, Developments in Mathematics, Vol. 36, Springer, Cham, 2016. doi: 10.1007/978-3-319-29025-6.  Google Scholar

[16]

R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory, Trans. ASME Ser. D J. Basic Engrg., 83 (1961), 95-108.  doi: 10.1115/1.3658902.  Google Scholar

[17]

W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Akademie Verlag, Berlin, 1995.  Google Scholar

[18]

W. Kratz, Definiteness of quadratic functionals, Analysis, 23 (2003), 163-183.  doi: 10.1524/anly.2003.23.2.163.  Google Scholar

[19]

B. P. Molinari, Nonnegativity of a quadratic functional, SIAM J. Control, 13 (1975), 792-806.  doi: 10.1137/0313046.  Google Scholar

[20]

W. T. Reid, Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems, Pacific J. Math., 13 (1963), 665-685.  doi: 10.2140/pjm.1963.13.665.  Google Scholar

[21]

W. T. Reid, Principal solutions of nonoscillatory linear differential systems, J. Math. Anal. Appl., 9 (1964), 397-423.  doi: 10.1016/0022-247X(64)90026-5.  Google Scholar

[22]

W. T. Reid, Ordinary Differential Equations, John Wiley & Sons, Inc., New York –London –Sydney, 1971.  Google Scholar

[23] W. T. Reid, Riccati Differential Equations, Academic Press, New York –London, 1972.   Google Scholar
[24]

W. T. Reid, Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, New York –Berlin –Heidelberg, 1980.  Google Scholar

[25]

V. Růžičková, Discrete Symplectic Systems and Definiteness of Quadratic Functionals, Ph.D thesis, Masaryk University, Brno, 2006. Available from https://is.muni.cz/th/p9iz7/?lang=en. Google Scholar

[26]

P. Šepitka, Theory of Principal Solutions at Infinity for Linear Hamiltonian Systems, Ph.D thesis, Masaryk University, Brno, 2014. Available from https://is.muni.cz/th/vqad7/?lang=en. Google Scholar

[27]

P. Šepitka, Genera of conjoined bases for (non)oscillatory linear Hamiltonian systems: extended theory, submitted, 2017. Google Scholar

[28]

P. Šepitka and R. Šimon Hilscher, Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems, J. Dynam. Differential Equations, 26 (2014), 57-91.  doi: 10.1007/s10884-013-9342-1.  Google Scholar

[29]

P. Šepitka and R. Šimon Hilscher, Principal solutions at infinity of given ranks for nonoscillatory linear Hamiltonian systems, J. Dynam. Differential Equations, 27 (2015), 137-175.  doi: 10.1007/s10884-014-9389-7.  Google Scholar

[30]

P. Šepitka and R. Šimon Hilscher, Principal and antiprincipal solutions at infinity of linear Hamiltonian systems, J. Differential Equations, 259 (2015), 4651-4682.  doi: 10.1016/j.jde.2015.06.027.  Google Scholar

[31]

P. Šepitka and R. Šimon Hilscher, Genera of conjoined bases of linear Hamiltonian systems and limit characterization of principal solutions at infinity, J. Differential Equations, 260 (2016), 6581-6603.  doi: 10.1016/j.jde.2016.01.004.  Google Scholar

[32]

P. Šepitka and R. Šimon Hilscher, Reid's construction of minimal principal solution at infinity for linear Hamiltonian systems, in Differential and Difference Equations with Applications (eds. S. Pinelas, Z. Došlá, O. Došlý and P. E. Kloeden), Proceedings of the International Conference on Differential & Difference Equations and Applications (Amadora, 2015), Springer Proceedings in Mathematics & Statistics, Vol. 164, Springer, (2016), 359–369. doi: 10.1007/978-3-319-32857-7_34.  Google Scholar

[33]

R. Šimon Hilscher, On general Sturmian theory for abnormal linear Hamiltonian systems, in Dynamical Systems, Differential Equations and Applications (eds. W. Feng, Z. Feng, M. Grasselli, A. Ibragimov, X. Lu, S. Siegmund and J. Voigt), Proceedings of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Dresden, 2010), Discrete Contin. Dynam. Systems, Suppl. 2011, American Institute of Mathematical Sciences (AIMS), (2011), 684–691.  Google Scholar

[34]

J. L. Speyer and D. H. Jacobson, Primer on Optimal Control Theory, Advances in Design and Control, Vol. 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010. doi: 10.1137/1.9780898718560.  Google Scholar

[35]

G. Stefani and P. Zezza, Constrained regular LQ-control problems, SIAM J. Control Optim., 35 (1997), 876-900.  doi: 10.1137/S0363012995286848.  Google Scholar

[36]

M. Wahrheit, Eigenvalue problems and oscillation of linear Hamiltonian systems, Int. J. Difference Equ., 2 (2007), 221-244.   Google Scholar

[37]

V. Zeidan, Sufficiency criteria via focal points and via coupled points, SIAM J. Control Optim., 30 (1992), 82-98.  doi: 10.1137/0330006.  Google Scholar

[38]

V. Zeidan, The Riccati equation for optimal control problems with mixed state-control constraints: necessity and sufficiency, SIAM J. Control Optim., 32 (1994), 1297-1321.  doi: 10.1137/S0363012992233640.  Google Scholar

[39]

V. Zeidan, New second-order optimality conditions for variational problems with C2-Hamiltonians, SIAM J. Control Optim., 40 (2001), 577-609.  doi: 10.1137/S0363012999358725.  Google Scholar

[1]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[2]

Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014

[3]

Laura Olian Fannio. Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 251-264. doi: 10.3934/dcds.1997.3.251

[4]

Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95

[5]

Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841

[6]

Jin Feng He, Wei Xu, Zhi Guo Feng, Xinsong Yang. On the global optimal solution for linear quadratic problems of switched system. Journal of Industrial & Management Optimization, 2019, 15 (2) : 817-832. doi: 10.3934/jimo.2018072

[7]

Iryna Pankratova, Andrey Piatnitski. On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 935-970. doi: 10.3934/dcdsb.2009.11.935

[8]

Fang Liu. An inhomogeneous evolution equation involving the normalized infinity Laplacian with a transport term. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2395-2421. doi: 10.3934/cpaa.2018114

[9]

Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075

[10]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

[11]

Goro Akagi, Kazumasa Suzuki. On a certain degenerate parabolic equation associated with the infinity-laplacian. Conference Publications, 2007, 2007 (Special) : 18-27. doi: 10.3934/proc.2007.2007.18

[12]

Gang Li, Fen Gu, Feida Jiang. Positive viscosity solutions of a third degree homogeneous parabolic infinity Laplace equation. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1449-1462. doi: 10.3934/cpaa.2020071

[13]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[14]

Luis Barreira, Claudia Valls. Topological conjugacies and behavior at infinity. Communications on Pure & Applied Analysis, 2014, 13 (2) : 687-701. doi: 10.3934/cpaa.2014.13.687

[15]

A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373

[16]

Victor S. Kozyakin, Alexander M. Krasnosel’skii, Dmitrii I. Rachinskii. Arnold tongues for bifurcation from infinity. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 107-116. doi: 10.3934/dcdss.2008.1.107

[17]

Victor Kozyakin, Alexander M. Krasnosel’skii, Dmitrii Rachinskii. Asymptotics of the Arnold tongues in problems at infinity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 989-1011. doi: 10.3934/dcds.2008.20.989

[18]

Erik Lindgren, Peter Lindqvist. Infinity-harmonic potentials and their streamlines. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4731-4746. doi: 10.3934/dcds.2019192

[19]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

[20]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (103)
  • HTML views (94)
  • Cited by (0)

Other articles
by authors

[Back to Top]