April  2019, 39(4): 1779-1797. doi: 10.3934/dcds.2019077

Spectra of expanding maps on Besov spaces

1. 

Kitami Institute of Technology, Faculty of Engineering, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan

2. 

Kyoto University, Graduate School of Human and Environmental Studies, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan

Received  October 2017 Revised  September 2018 Published  January 2019

Fund Project: This work was partially supported by JSPS KAKENHI Grant Numbers 16J03963 and 17K05283

A typical approach to analysing statistical properties of expanding maps is to show spectral gaps of associated transfer operators in adapted function spaces. The classical function spaces for this purpose are Hölder spaces and Sobolev spaces. Natural generalisations of these spaces are Besov spaces, on which we show a spectral gap of transfer operators.

Citation: Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077
References:
[1]

J. Aaronson and M. Denker, Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps, Stochastics and Dynamics, 1 (2001), 193-237.  doi: 10.1142/S0219493701000114.  Google Scholar

[2]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343, Springer Science & Business Media, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[3]

M. Baillif and V. Baladi, Kneading determinants and spectra of transfer operators in higher dimensions: the isotropic case, Ergodic Theory Dyn. Syst., 25 (2005), 1437-1470.  doi: 10.1017/S014338570500012X.  Google Scholar

[4]

V. Baladi, Positive Transfer Operators and Decay of Correlations, World Scientific, 2000. doi: 10.1142/9789812813633.  Google Scholar

[5]

V. Baladi, The quest for the ultimate anisotropic Banach space, Journal of Statistical Physics, 166 (2017), 525-557.  doi: 10.1007/s10955-016-1663-0.  Google Scholar

[6]

V. Baladi, Characteristic functions as bounded multipliers on anisotropic spaces, Proceedings of the American Mathematical Society, 146 (2018), 4405-4420.  doi: 10.1090/proc/14107.  Google Scholar

[7]

V. Baladi, Correction to: The Quest for the Ultimate Anisotropic Banach Space, Journal of Statistical Physics, 170 (2018), 1242-1247.  doi: 10.1007/s10955-018-1976-2.  Google Scholar

[8]

V. Baladi, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, 2018. doi: 10.1007/978-3-319-77661-3.  Google Scholar

[9]

V. BaladiA. Kondah and B. Schmitt, Random correlations for small perturbations of expanding maps, Random Comput. Dynam., 4 (1996), 179-204.   Google Scholar

[10]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier, 57 (2007), 127-154.  doi: 10.5802/aif.2253.  Google Scholar

[11]

V. Baladi and M. Tsujii, Dynamical determinants and spectrum for hyperbolic diffeomorphisms, in: K. Burns, D. Dolgopyat and Y. Pesin (eds.), Geometric and probabilistic structures in dynamics, Contemp. Math., Amer. Math. Soc., 469 (2008), 29–68. doi: 10.1090/conm/469.  Google Scholar

[12]

V. Baladi and M. Tsujii, Spectra of differential hyperbolic maps, in: S. Albeverio, M. Marcolli, S. Paycha and J. Plazas (eds.), Traces in number theory, geometry and quantum fields, Aspects Math., Friedr. Vieweg, 38 (2008), 1–21.  Google Scholar

[13]

V. Baladi and L.-S. Young, On the spectra of randomly perturbed expanding maps, Comm. Math. Phys., 156 (1993), 355-385.  doi: 10.1007/BF02098487.  Google Scholar

[14]

V. Baladi and L.-S. Young, Erratum: "On the spectra of randomly perturbed expanding maps", Comm. Math. Phys., 166 (1994), 219-220.   Google Scholar

[15]

F. Faure, Semiclassical origin of the spectral gap for transfer operators of a partially expanding map, Nonlinearity, 24 (2011), 1473-1498.  doi: 10.1088/0951-7715/24/5/005.  Google Scholar

[16]

S. Gouëzel, Limit theorems in dynamical systems using the spectral method, in: D. Dolgopyat, Y. Pesin, M. Pollicott and L. Stoyanov (eds.), Hyperbolic Dynamics, Fluctuations and Large Deviations, Proc. Sympos. Pure Math., Amer. Math. Soc., 89 (2015), 161–193. doi: 10.1090/pspum/089/01487.  Google Scholar

[17]

V. M. Gundlach and Y. Latushkin, A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces, Ergodic Theory and Dynamical Systems, 23 (2003), 175-191.  doi: 10.1017/S0143385702000962.  Google Scholar

[18]

H. Hennion, Sur un théoreme spectral et son application aux noyaux lipchitziens, Proceedings of the American Mathematical Society, 118 (1993), 627-634.  doi: 10.2307/2160348.  Google Scholar

[19] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995.  doi: 10.1017/CBO9780511809187.  Google Scholar
[20]

R. Mané, Ergodic Theory and Differentiable Dynamics, vol. 8, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-70335-5.  Google Scholar

[21]

F. Przytycki and M. Urbański, Conformal Fractals: Ergodic Theory Methods, vol. 371, Cambridge University Press, 2010. doi: 10.1017/CBO9781139193184.  Google Scholar

[22]

D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley, 1978.  Google Scholar

[23]

D. Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys., 125 (1989), 239-262.  doi: 10.1007/BF01217908.  Google Scholar

[24]

D. Ruelle, Une extension de la théorie de Fredholm, Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 309 (1989), 309–310.  Google Scholar

[25]

D. Ruelle, An extension of the theory of Fredholm determinants, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 72 (1990), 175–193.  Google Scholar

[26]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, vol. 2, Princeton university press, 1970.  Google Scholar

[27]

M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, vol. 100 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1991. doi: 10.1007/978-1-4612-0431-2.  Google Scholar

[28]

D. Thomine, A spectral gap for transfer operators of piecewise expanding maps, Continuous Dynamical Systems-A, 30 (2011), 917-944.  doi: 10.3934/dcds.2011.30.917.  Google Scholar

[29]

H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation, Arkiv för Matematik, 11 (1973), 13–64. doi: 10.1007/BF02388506.  Google Scholar

[30]

H. Triebel, Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Arkiv för Matematik, 24 (1986), 299–337. doi: 10.1007/BF02384402.  Google Scholar

[31]

M. Viana, Lectures on Lyapunov exponents, vol. 145, Cambridge University Press, 2014. doi: 10.1017/CBO9781139976602.  Google Scholar

[32]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, 1982.  Google Scholar

show all references

References:
[1]

J. Aaronson and M. Denker, Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps, Stochastics and Dynamics, 1 (2001), 193-237.  doi: 10.1142/S0219493701000114.  Google Scholar

[2]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343, Springer Science & Business Media, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[3]

M. Baillif and V. Baladi, Kneading determinants and spectra of transfer operators in higher dimensions: the isotropic case, Ergodic Theory Dyn. Syst., 25 (2005), 1437-1470.  doi: 10.1017/S014338570500012X.  Google Scholar

[4]

V. Baladi, Positive Transfer Operators and Decay of Correlations, World Scientific, 2000. doi: 10.1142/9789812813633.  Google Scholar

[5]

V. Baladi, The quest for the ultimate anisotropic Banach space, Journal of Statistical Physics, 166 (2017), 525-557.  doi: 10.1007/s10955-016-1663-0.  Google Scholar

[6]

V. Baladi, Characteristic functions as bounded multipliers on anisotropic spaces, Proceedings of the American Mathematical Society, 146 (2018), 4405-4420.  doi: 10.1090/proc/14107.  Google Scholar

[7]

V. Baladi, Correction to: The Quest for the Ultimate Anisotropic Banach Space, Journal of Statistical Physics, 170 (2018), 1242-1247.  doi: 10.1007/s10955-018-1976-2.  Google Scholar

[8]

V. Baladi, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, 2018. doi: 10.1007/978-3-319-77661-3.  Google Scholar

[9]

V. BaladiA. Kondah and B. Schmitt, Random correlations for small perturbations of expanding maps, Random Comput. Dynam., 4 (1996), 179-204.   Google Scholar

[10]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier, 57 (2007), 127-154.  doi: 10.5802/aif.2253.  Google Scholar

[11]

V. Baladi and M. Tsujii, Dynamical determinants and spectrum for hyperbolic diffeomorphisms, in: K. Burns, D. Dolgopyat and Y. Pesin (eds.), Geometric and probabilistic structures in dynamics, Contemp. Math., Amer. Math. Soc., 469 (2008), 29–68. doi: 10.1090/conm/469.  Google Scholar

[12]

V. Baladi and M. Tsujii, Spectra of differential hyperbolic maps, in: S. Albeverio, M. Marcolli, S. Paycha and J. Plazas (eds.), Traces in number theory, geometry and quantum fields, Aspects Math., Friedr. Vieweg, 38 (2008), 1–21.  Google Scholar

[13]

V. Baladi and L.-S. Young, On the spectra of randomly perturbed expanding maps, Comm. Math. Phys., 156 (1993), 355-385.  doi: 10.1007/BF02098487.  Google Scholar

[14]

V. Baladi and L.-S. Young, Erratum: "On the spectra of randomly perturbed expanding maps", Comm. Math. Phys., 166 (1994), 219-220.   Google Scholar

[15]

F. Faure, Semiclassical origin of the spectral gap for transfer operators of a partially expanding map, Nonlinearity, 24 (2011), 1473-1498.  doi: 10.1088/0951-7715/24/5/005.  Google Scholar

[16]

S. Gouëzel, Limit theorems in dynamical systems using the spectral method, in: D. Dolgopyat, Y. Pesin, M. Pollicott and L. Stoyanov (eds.), Hyperbolic Dynamics, Fluctuations and Large Deviations, Proc. Sympos. Pure Math., Amer. Math. Soc., 89 (2015), 161–193. doi: 10.1090/pspum/089/01487.  Google Scholar

[17]

V. M. Gundlach and Y. Latushkin, A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces, Ergodic Theory and Dynamical Systems, 23 (2003), 175-191.  doi: 10.1017/S0143385702000962.  Google Scholar

[18]

H. Hennion, Sur un théoreme spectral et son application aux noyaux lipchitziens, Proceedings of the American Mathematical Society, 118 (1993), 627-634.  doi: 10.2307/2160348.  Google Scholar

[19] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995.  doi: 10.1017/CBO9780511809187.  Google Scholar
[20]

R. Mané, Ergodic Theory and Differentiable Dynamics, vol. 8, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-70335-5.  Google Scholar

[21]

F. Przytycki and M. Urbański, Conformal Fractals: Ergodic Theory Methods, vol. 371, Cambridge University Press, 2010. doi: 10.1017/CBO9781139193184.  Google Scholar

[22]

D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley, 1978.  Google Scholar

[23]

D. Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys., 125 (1989), 239-262.  doi: 10.1007/BF01217908.  Google Scholar

[24]

D. Ruelle, Une extension de la théorie de Fredholm, Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 309 (1989), 309–310.  Google Scholar

[25]

D. Ruelle, An extension of the theory of Fredholm determinants, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 72 (1990), 175–193.  Google Scholar

[26]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, vol. 2, Princeton university press, 1970.  Google Scholar

[27]

M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, vol. 100 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1991. doi: 10.1007/978-1-4612-0431-2.  Google Scholar

[28]

D. Thomine, A spectral gap for transfer operators of piecewise expanding maps, Continuous Dynamical Systems-A, 30 (2011), 917-944.  doi: 10.3934/dcds.2011.30.917.  Google Scholar

[29]

H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation, Arkiv för Matematik, 11 (1973), 13–64. doi: 10.1007/BF02388506.  Google Scholar

[30]

H. Triebel, Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Arkiv för Matematik, 24 (1986), 299–337. doi: 10.1007/BF02384402.  Google Scholar

[31]

M. Viana, Lectures on Lyapunov exponents, vol. 145, Cambridge University Press, 2014. doi: 10.1017/CBO9781139976602.  Google Scholar

[32]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, 1982.  Google Scholar

[1]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[2]

Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453

[3]

Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917

[4]

Vladimír Špitalský. Transitive dendrite map with infinite decomposition ideal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 771-792. doi: 10.3934/dcds.2015.35.771

[5]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[6]

Tan Bui-Thanh, Omar Ghattas. A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors. Inverse Problems & Imaging, 2015, 9 (1) : 27-53. doi: 10.3934/ipi.2015.9.27

[7]

C. David Levermore, Weiran Sun. Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinetic & Related Models, 2010, 3 (2) : 335-351. doi: 10.3934/krm.2010.3.335

[8]

Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

[9]

Yury Arlinskiĭ, Eduard Tsekanovskiĭ. Constant J-unitary factor and operator-valued transfer functions. Conference Publications, 2003, 2003 (Special) : 48-56. doi: 10.3934/proc.2003.2003.48

[10]

Gary Froyland, Simon Lloyd, Anthony Quas. A semi-invertible Oseledets Theorem with applications to transfer operator cocycles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3835-3860. doi: 10.3934/dcds.2013.33.3835

[11]

Matti Lassas, Eero Saksman, Samuli Siltanen. Discretization-invariant Bayesian inversion and Besov space priors. Inverse Problems & Imaging, 2009, 3 (1) : 87-122. doi: 10.3934/ipi.2009.3.87

[12]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[13]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

[14]

Horst R. Thieme. Positive perturbation of operator semigroups: growth bounds, essential compactness and asynchronous exponential growth. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 735-764. doi: 10.3934/dcds.1998.4.735

[15]

Alessandra Celletti, Sara Di Ruzza. Periodic and quasi--periodic orbits of the dissipative standard map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 151-171. doi: 10.3934/dcdsb.2011.16.151

[16]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Period doubling and reducibility in the quasi-periodically forced logistic map. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1507-1535. doi: 10.3934/dcdsb.2012.17.1507

[17]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[18]

Wen Tan, Bo-Qing Dong, Zhi-Min Chen. Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3749-3765. doi: 10.3934/dcds.2019152

[19]

Ming Huang, Cong Cheng, Yang Li, Zun Quan Xia. The space decomposition method for the sum of nonlinear convex maximum eigenvalues and its applications. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019034

[20]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (50)
  • HTML views (46)
  • Cited by (0)

Other articles
by authors

[Back to Top]