April  2019, 39(4): 1779-1797. doi: 10.3934/dcds.2019077

Spectra of expanding maps on Besov spaces

1. 

Kitami Institute of Technology, Faculty of Engineering, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan

2. 

Kyoto University, Graduate School of Human and Environmental Studies, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan

Received  October 2017 Revised  September 2018 Published  January 2019

Fund Project: This work was partially supported by JSPS KAKENHI Grant Numbers 16J03963 and 17K05283.

A typical approach to analysing statistical properties of expanding maps is to show spectral gaps of associated transfer operators in adapted function spaces. The classical function spaces for this purpose are Hölder spaces and Sobolev spaces. Natural generalisations of these spaces are Besov spaces, on which we show a spectral gap of transfer operators.

Citation: Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077
References:
[1]

J. Aaronson and M. Denker, Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps, Stochastics and Dynamics, 1 (2001), 193-237.  doi: 10.1142/S0219493701000114.  Google Scholar

[2]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343, Springer Science & Business Media, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[3]

M. Baillif and V. Baladi, Kneading determinants and spectra of transfer operators in higher dimensions: the isotropic case, Ergodic Theory Dyn. Syst., 25 (2005), 1437-1470.  doi: 10.1017/S014338570500012X.  Google Scholar

[4]

V. Baladi, Positive Transfer Operators and Decay of Correlations, World Scientific, 2000. doi: 10.1142/9789812813633.  Google Scholar

[5]

V. Baladi, The quest for the ultimate anisotropic Banach space, Journal of Statistical Physics, 166 (2017), 525-557.  doi: 10.1007/s10955-016-1663-0.  Google Scholar

[6]

V. Baladi, Characteristic functions as bounded multipliers on anisotropic spaces, Proceedings of the American Mathematical Society, 146 (2018), 4405-4420.  doi: 10.1090/proc/14107.  Google Scholar

[7]

V. Baladi, Correction to: The Quest for the Ultimate Anisotropic Banach Space, Journal of Statistical Physics, 170 (2018), 1242-1247.  doi: 10.1007/s10955-018-1976-2.  Google Scholar

[8]

V. Baladi, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, 2018. doi: 10.1007/978-3-319-77661-3.  Google Scholar

[9]

V. BaladiA. Kondah and B. Schmitt, Random correlations for small perturbations of expanding maps, Random Comput. Dynam., 4 (1996), 179-204.   Google Scholar

[10]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier, 57 (2007), 127-154.  doi: 10.5802/aif.2253.  Google Scholar

[11]

V. Baladi and M. Tsujii, Dynamical determinants and spectrum for hyperbolic diffeomorphisms, in: K. Burns, D. Dolgopyat and Y. Pesin (eds.), Geometric and probabilistic structures in dynamics, Contemp. Math., Amer. Math. Soc., 469 (2008), 29–68. doi: 10.1090/conm/469.  Google Scholar

[12]

V. Baladi and M. Tsujii, Spectra of differential hyperbolic maps, in: S. Albeverio, M. Marcolli, S. Paycha and J. Plazas (eds.), Traces in number theory, geometry and quantum fields, Aspects Math., Friedr. Vieweg, 38 (2008), 1–21.  Google Scholar

[13]

V. Baladi and L.-S. Young, On the spectra of randomly perturbed expanding maps, Comm. Math. Phys., 156 (1993), 355-385.  doi: 10.1007/BF02098487.  Google Scholar

[14]

V. Baladi and L.-S. Young, Erratum: "On the spectra of randomly perturbed expanding maps", Comm. Math. Phys., 166 (1994), 219-220.   Google Scholar

[15]

F. Faure, Semiclassical origin of the spectral gap for transfer operators of a partially expanding map, Nonlinearity, 24 (2011), 1473-1498.  doi: 10.1088/0951-7715/24/5/005.  Google Scholar

[16]

S. Gouëzel, Limit theorems in dynamical systems using the spectral method, in: D. Dolgopyat, Y. Pesin, M. Pollicott and L. Stoyanov (eds.), Hyperbolic Dynamics, Fluctuations and Large Deviations, Proc. Sympos. Pure Math., Amer. Math. Soc., 89 (2015), 161–193. doi: 10.1090/pspum/089/01487.  Google Scholar

[17]

V. M. Gundlach and Y. Latushkin, A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces, Ergodic Theory and Dynamical Systems, 23 (2003), 175-191.  doi: 10.1017/S0143385702000962.  Google Scholar

[18]

H. Hennion, Sur un théoreme spectral et son application aux noyaux lipchitziens, Proceedings of the American Mathematical Society, 118 (1993), 627-634.  doi: 10.2307/2160348.  Google Scholar

[19] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995.  doi: 10.1017/CBO9780511809187.  Google Scholar
[20]

R. Mané, Ergodic Theory and Differentiable Dynamics, vol. 8, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-70335-5.  Google Scholar

[21]

F. Przytycki and M. Urbański, Conformal Fractals: Ergodic Theory Methods, vol. 371, Cambridge University Press, 2010. doi: 10.1017/CBO9781139193184.  Google Scholar

[22]

D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley, 1978.  Google Scholar

[23]

D. Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys., 125 (1989), 239-262.  doi: 10.1007/BF01217908.  Google Scholar

[24]

D. Ruelle, Une extension de la théorie de Fredholm, Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 309 (1989), 309–310.  Google Scholar

[25]

D. Ruelle, An extension of the theory of Fredholm determinants, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 72 (1990), 175–193.  Google Scholar

[26]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, vol. 2, Princeton university press, 1970.  Google Scholar

[27]

M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, vol. 100 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1991. doi: 10.1007/978-1-4612-0431-2.  Google Scholar

[28]

D. Thomine, A spectral gap for transfer operators of piecewise expanding maps, Continuous Dynamical Systems-A, 30 (2011), 917-944.  doi: 10.3934/dcds.2011.30.917.  Google Scholar

[29]

H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation, Arkiv för Matematik, 11 (1973), 13–64. doi: 10.1007/BF02388506.  Google Scholar

[30]

H. Triebel, Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Arkiv för Matematik, 24 (1986), 299–337. doi: 10.1007/BF02384402.  Google Scholar

[31]

M. Viana, Lectures on Lyapunov exponents, vol. 145, Cambridge University Press, 2014. doi: 10.1017/CBO9781139976602.  Google Scholar

[32]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, 1982.  Google Scholar

show all references

References:
[1]

J. Aaronson and M. Denker, Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps, Stochastics and Dynamics, 1 (2001), 193-237.  doi: 10.1142/S0219493701000114.  Google Scholar

[2]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343, Springer Science & Business Media, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[3]

M. Baillif and V. Baladi, Kneading determinants and spectra of transfer operators in higher dimensions: the isotropic case, Ergodic Theory Dyn. Syst., 25 (2005), 1437-1470.  doi: 10.1017/S014338570500012X.  Google Scholar

[4]

V. Baladi, Positive Transfer Operators and Decay of Correlations, World Scientific, 2000. doi: 10.1142/9789812813633.  Google Scholar

[5]

V. Baladi, The quest for the ultimate anisotropic Banach space, Journal of Statistical Physics, 166 (2017), 525-557.  doi: 10.1007/s10955-016-1663-0.  Google Scholar

[6]

V. Baladi, Characteristic functions as bounded multipliers on anisotropic spaces, Proceedings of the American Mathematical Society, 146 (2018), 4405-4420.  doi: 10.1090/proc/14107.  Google Scholar

[7]

V. Baladi, Correction to: The Quest for the Ultimate Anisotropic Banach Space, Journal of Statistical Physics, 170 (2018), 1242-1247.  doi: 10.1007/s10955-018-1976-2.  Google Scholar

[8]

V. Baladi, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, 2018. doi: 10.1007/978-3-319-77661-3.  Google Scholar

[9]

V. BaladiA. Kondah and B. Schmitt, Random correlations for small perturbations of expanding maps, Random Comput. Dynam., 4 (1996), 179-204.   Google Scholar

[10]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier, 57 (2007), 127-154.  doi: 10.5802/aif.2253.  Google Scholar

[11]

V. Baladi and M. Tsujii, Dynamical determinants and spectrum for hyperbolic diffeomorphisms, in: K. Burns, D. Dolgopyat and Y. Pesin (eds.), Geometric and probabilistic structures in dynamics, Contemp. Math., Amer. Math. Soc., 469 (2008), 29–68. doi: 10.1090/conm/469.  Google Scholar

[12]

V. Baladi and M. Tsujii, Spectra of differential hyperbolic maps, in: S. Albeverio, M. Marcolli, S. Paycha and J. Plazas (eds.), Traces in number theory, geometry and quantum fields, Aspects Math., Friedr. Vieweg, 38 (2008), 1–21.  Google Scholar

[13]

V. Baladi and L.-S. Young, On the spectra of randomly perturbed expanding maps, Comm. Math. Phys., 156 (1993), 355-385.  doi: 10.1007/BF02098487.  Google Scholar

[14]

V. Baladi and L.-S. Young, Erratum: "On the spectra of randomly perturbed expanding maps", Comm. Math. Phys., 166 (1994), 219-220.   Google Scholar

[15]

F. Faure, Semiclassical origin of the spectral gap for transfer operators of a partially expanding map, Nonlinearity, 24 (2011), 1473-1498.  doi: 10.1088/0951-7715/24/5/005.  Google Scholar

[16]

S. Gouëzel, Limit theorems in dynamical systems using the spectral method, in: D. Dolgopyat, Y. Pesin, M. Pollicott and L. Stoyanov (eds.), Hyperbolic Dynamics, Fluctuations and Large Deviations, Proc. Sympos. Pure Math., Amer. Math. Soc., 89 (2015), 161–193. doi: 10.1090/pspum/089/01487.  Google Scholar

[17]

V. M. Gundlach and Y. Latushkin, A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces, Ergodic Theory and Dynamical Systems, 23 (2003), 175-191.  doi: 10.1017/S0143385702000962.  Google Scholar

[18]

H. Hennion, Sur un théoreme spectral et son application aux noyaux lipchitziens, Proceedings of the American Mathematical Society, 118 (1993), 627-634.  doi: 10.2307/2160348.  Google Scholar

[19] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995.  doi: 10.1017/CBO9780511809187.  Google Scholar
[20]

R. Mané, Ergodic Theory and Differentiable Dynamics, vol. 8, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-70335-5.  Google Scholar

[21]

F. Przytycki and M. Urbański, Conformal Fractals: Ergodic Theory Methods, vol. 371, Cambridge University Press, 2010. doi: 10.1017/CBO9781139193184.  Google Scholar

[22]

D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley, 1978.  Google Scholar

[23]

D. Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys., 125 (1989), 239-262.  doi: 10.1007/BF01217908.  Google Scholar

[24]

D. Ruelle, Une extension de la théorie de Fredholm, Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 309 (1989), 309–310.  Google Scholar

[25]

D. Ruelle, An extension of the theory of Fredholm determinants, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 72 (1990), 175–193.  Google Scholar

[26]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, vol. 2, Princeton university press, 1970.  Google Scholar

[27]

M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, vol. 100 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1991. doi: 10.1007/978-1-4612-0431-2.  Google Scholar

[28]

D. Thomine, A spectral gap for transfer operators of piecewise expanding maps, Continuous Dynamical Systems-A, 30 (2011), 917-944.  doi: 10.3934/dcds.2011.30.917.  Google Scholar

[29]

H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation, Arkiv för Matematik, 11 (1973), 13–64. doi: 10.1007/BF02388506.  Google Scholar

[30]

H. Triebel, Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Arkiv för Matematik, 24 (1986), 299–337. doi: 10.1007/BF02384402.  Google Scholar

[31]

M. Viana, Lectures on Lyapunov exponents, vol. 145, Cambridge University Press, 2014. doi: 10.1017/CBO9781139976602.  Google Scholar

[32]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, 1982.  Google Scholar

[1]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020397

[2]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[3]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[4]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[5]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[6]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[7]

Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050

[8]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[9]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[12]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[13]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[14]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[15]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[16]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[17]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[18]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[19]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[20]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (99)
  • HTML views (93)
  • Cited by (0)

Other articles
by authors

[Back to Top]